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ABSTRACT

It is important to compress three dimensional (3D) data ef-
ficiently, since 3D data are too large to store or transmit in
general. In this paper, we propose a lossless compression
algorithm of the 3D mesh connectivity, based on the ver-
tex degree. Most techniques for the 3D mesh compression
treat the connectivity and the geometry separately, but our
approach attempts to exploit the geometric information for
compressing the connectivity information. We use the geo-
metric angle constraint of the vertex fanout pattern to predict
the vertex degree, so the proposed algorithm yields higher
compression efficiency than the conventional algorithms.

1. INTRODUCTION

In recent years, 3D images or data have drawn much atten-
tion as the multimedia type of next generation, according
to the progress of many 3D modeling technologies and the
expansion of various 3D applications. But, the 3D data is
too large to store or transmit through constrained bandwidth
channels, so it is essential to compress them efficiently. The
3D model in computer graphics is mainly represented by
triangular or polygonal meshes, yielding the geometry in-
formation (vertex positions) and the connectivity informa-
tion for the vertices. However, the random structure of the
polygonal meshes makes it difficult to use the conventional
compression techniques for 2D image or video data to com-
press the 3D data directly. Thus, the need for efficient com-
pression schemes of the 3D mesh data is increasing dramat-
ically.

In computer vision area, the notion of level of detail
(LOD) has been introduced as the compressing method for
the 3D mesh model, but it transforms the original topology
of the object and cannot achieve the lossless compression
[4]. Until now, several techniques have been proposed to
losslessly compress the connectivity information of the 3D
triangular mesh model. Deering proposed the generalized
mesh, composed of the vertex-buffer and the triangle strip
[1]. Taubin et al. proposed the vertex and triangle span-
ning trees, and conjectured that the optimization problem of
the spanning trees is NP-complete. In their algorithm, the
conmnectivity information is encoded using only two bits per
triangle on average [2]. Gumbhold el al. presented the fast
compressing and decompressing algorithm for the triangle
mesh connectivity, by arranging arbitrary triangular mesh

into one triangular strip using the breadth first traversal [3].
Tauma et al. represented the mesh connectivity as a list of
the vertex degrees in a special order, then assigned one of the
‘add’, ‘sphit’, ‘merge’, and ‘add dummy’ codes to each ver-
tex degree. It was shown that the connectivity information
is encoded with 1.5 bits per vertex on average [5].

In this paper, we follow the vertex degree representa-
tion in [5], and propose a more optimized and efficient mesh
coding algorithm, calied the vertex fanout pattern coding
(VFPC). We reduce the entropy of the connectivity infor-
mation (vertex degree), by predicting each vertex degree
with the geometrically discovered fanout shape of the ver-
tex. In other words, the proposed algorithm exploits the ge-
ometry information for encoding the connectivity informa-
tion, while the conventional algorithms consider the mesh
connectivity is independent of the mesh geometry [1, 2, 5].
Thus, the proposed algorithm can yield better coding per-
formance for the connectivity information than the conven-
tional algorithms.

This paper is organized as follows. In Section 2, we de-
scribe the topological patterns of the vertex fanout and the
vertex fanout shapes, and propose the VFPC algorithm. In
Section 3, we compare the performance of the proposed al-
gorithm with those of the conventional algorithms. Finally,
we conclude this paper in Section 4.

2. PROPOSED ALGORITHM

As mentioned previously, the conventional algorithms treat
the mesh connectivity as separated from the mesh geometry
[1,2, 5]. Fig. 1 shows two types of the connected set of trian-
gles, fanout and strip. Most compression algorithms for the
mesh connectivity are related to making the optimized trian-
gle strip [1, 2], while [5] uses the topological fanout. In this
paper, we compress the mesh connectivity classified by four
topological fanout patterns which are explained later, using
the combined information of the geometrical vertex fanout
shapes. Fig. 2 shows the block diagram for the encoder and
decoder of the proposed VFPC algorithm. The geometry
information (vertex positions) is represented by assigning
three floating point numbers (x, y, z) to each vertex. We
pre-quantize these floating point numbers with various res-
olutions, and use the parallelogram method [6] to compress
the quantized vertex position. In case of the connectivity in-
formation, we first find a seed vertex, then put it in the active
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Fig, 1. Two types of the triangle set.

(b) Decoder

Fig. 2. The block diagram of the proposed algorithm,

vertex list, and send its fanout degree. Then, we send all the
positions of vertices that are connected to the seed vertex, in
order to discover all the triangles composing the fanout pat-
tern of the seed vertex. Meanwhile, we insert new vertices
in the active vertex list, and remove the seed vertex from it.
This procedure is repeated until all the triangles abut on the
vertices in the active vertex list are discovered. In this mesh
expansion process, there are four cases of the topological
patterns of the vertex fanout, and two cases of the fanout
geometry shapes. We employ the fanout geometry shapes
to reduce the entropy of the code distribution of the vertex
fanout degrees. The decoding process is simply the inverse
of the encoding process.

2.1. Topological Vertex Fanout Patterns

Fig. 3 shows the topological vertex fanout patterns, which
are classified into 4 cases, in which P, C, and N denote pre-
vious, current, and next vertices in the active vertex list, and
S, M, and D denote splitting, merging, and dummy vertices,
respectively. The shaded region of the mesh represents dis-
covered (coded) triangles. Solid and dashed lines represent
triangles at the current vertex, which are currently found and
not yet encoded, respectively. Fig. 3(a) is the ‘new’ case. At

(a) New VD (b) Split DT SO

(c) Merge DT MO1 MO2 (d) Bound DT

Fig. 3. Four cases of the topological pattern of the vertex
fanout.

the current vertex, the vertex degree, VD, is determined by
counting the triangles abut on the current vertex. In this case
VD is 6. Fig. 3(b) is the “split’ case, which occurs when one
of the vertices organizing newly discovered triangles is al-
ready a vertex in the active vertex list. In this case we should
transmit two parameters, the number of newly discovered

* triangles (DT) until the splitting vertex S is appeared, and

the clockwise offset (SO) of S from the current vertex C in
the active vertex list. In this Figure, DT is 2 and SO is 4.
Fig. 3(c) is the ‘merge’ case, which only takes a place on the
torus type mesh. The only difference from the ‘split’ case is
that the merging vertex M exists in the other list in the super-
list of the active vertex lists. Thus, another extra parameter
MO2, which indicates the index of the list in the super-list, is
required with the merge offset MO1. Fig. 3(d) is the ‘bound-
ary’ case, which occurs when the mesh has boundaries. If
the mesh contains a boundary, we insert the dummy vertex
D, generating dummy triangles, as shown in this figure. Tri-
angles having dashed lines in Fig. 3(d) are dummy triangles
at the boundary. So we code this case with a parameter DT,
which is the number of the discovered triangles at the cur-
rent vertex until the dummy vertex is discovered.

2.2. Geometric Constraint

While encoding the topological patterns of the vertex fanout
as mentioned previously, we exploit the geometric constraint
for achieving the better compression efficiency. In [5], at
the time of adding a new vertex into the active vertex list,
the vertex degree and the position of the vertex are encoded
by the ‘add’ code. Thus, at the time the decoder receives

— 463 —



(a) Small

(b) Big

Fig. 4. Two geometric shapes of the vertex fanout.

the ‘add’ code, only one triangle abut on the vertex is recon-
structed geometrically. On the contrary, we simultaneously
send the degree code (topological fanout patterns) of the cur-
rent vertex and the position information of all the vertices
connected with the current vertex. Therefore, we can use
the partially discovered angle of the vertex fanout to predict
the vertex degree. Fig. 4 represents two cases of deciding
the angle of the undiscovered vertex fanout part. Shaded
and white regions of the vertex fanout represent discovered
and undiscovered triangles, respectively, and O is the current
vertex in the active vertex list.

The prediction consists of three steps. First, we find the
angle which is smaller than =, from vectors (OA, OC) con-
nected to the current vertex, by

Angle = arccos ( (H

QA «OC
|OA}|OC|/

Second, we should determine which part of the fanout is
undiscovered to find the undiscovered angle of the fanout
shape. This routine uses one additional discovered vector
abut on the current vertex, i.e., OB. In Fig. 4, OP1 is the
cross product of OA and OC, and OP2 is the cross product
of OA and OB, given by

OoPrP1 =
oP2 =

OA x OC,
OA x OB.

If the discovered angle of the geometric fanout shape is smaller
than 7, then the inner product of two cross products, OP1
and OP2, yields a positive value. On the contrary, if the dis-
covered angle is larger than 7, the inner product of OP1 and
OP2 yields a negative value. By denoting the undiscovered
angle by UA, the pseudo code for deciding the geometric
shape of the vertex fanout is given as follows.

if (OP1 e« OP2 < 0)
UA = Angle

else if (OP1 ¢ OP2 > 0)
UA =27 - Angle

Third, we predict the vertex degree of the current vertex us-
ing the angle (UA), and assign a code of the vertex degree
error £, which is the difference between the real vertex de-

Table 1. The comparison of ‘add’ codes and £ codes distri-
bution of the model “bunny” .

‘add’ Codes £ Codes
(Without GC) | Frequency || (With GC) | Frequency
3 11 -3 5
4 390 -2 56
5 3971 -1 3430
6 26242 0 28220
7 3893 1 1709
8 300 2 53
9 23 3 10
10 3 4 18
11 1 5 3
12 1 exception 3
[ TotalFreq. [ 34835 [ TotalFreq. [ 33507 |

gree and the predicted vertex degree, given by
£ =(UT+DT)-RD, 2)
T UA
where NF = & and UT = [FF— .

Our approximation of the normalization factor NF as % is
found to be reasonable, since in typical meshes, the most
frequent vertex degree is 6, and the geometric shape of this
vertex fanout is often composed of 6 triangles similar to
equilateral triangles. UT is the number of undiscovered tri-
angles, which is the positive integer closest to ¥4. DT is
the number of discovered triangles, and RD is the real ver-
tex degree. With this geometric constraint (GC), the vertex
degree error codes are more compactly distributed than the
original codes of the vertex degrees without the geometric
constraint.

2.3. Entropy Coding Scheme

Table 1 is the comparison of the code distribution between
‘add’ codes without using GC (conventional algorithm, [5])
and £ codes using GC (proposed algorithm) for the 3D mesh
model, “Bunny”, when each vertex is pre-quantized with
12bit resolution. It can be seen that £ codes are more com-
pactly distributed than the ‘add’ codes. In conventional al-
gorithm, ‘add’ codes in [5] occur NV times, where NV is
the number of vertices. But, in the proposed algorithm, £
codes occur less than NV times, since we need not transmit
the vertex degree information of the remained vertices, if the
number of the vertices in the active vertex list is less than 3.
In such case, note that all the triangles abut on the remained
vertices are discovered already. Therefore, the proposed al-
gorithm can yield better compression performance for the
connectivity information than [5]. We have also found that
the vertex degree error codes £ and a few ‘split’ codes occur
frequently, while most ‘split’ cases, all the ‘merge’ cases,
and all the ‘boundary’ cases are rare. Thus, we employ a
two level coding method using an arithmetic coding and a
fixed length coding. First, we define N frequent codes with
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#V : Number of vertices
#T : Number of triangles
#B : Number of boundaries
CM : Context mode bit

CA : Context bit array

AB : Arithmetic bit stream

Fig. 5. The bitstream of the proposed coding scheme.

(a) Bunny

(b) Pieta

Fig. 6. 3D mesh models.

N symbols, and four extra symbols for the rarely occurring
codes, which are ‘new exception’, ‘split exception’, ‘merge
case’, and ‘boundary case’ codes. So the total number of
symbols for the arithmetic code is N+4. Second, for the ex-
tra symbols at the arithmetic coding level we encode some
parameters related these rare cases using a fixed length cod-
ing method. Fig. 5 shows the arithmetic coding bitstream
with the header information.

3. EXPERIMENTAL RESULTS

Experiments have been performed on several MPEG4-SNHC
3D mesh data, which are described with the VRML lan-
guage. Fig. 6 shows the examples of the 3D mesh models.
“Bunny” is very regular model, which has 34835 vertices,
69473 triangles, and 4 boundaries, and “Pieta” is very irreg-
ular model of torus type, having 3476 vertices, 6976 trian-
gles. The pre-quantized data is indistinguishable from the
original model, if bits per coordinate is more than 12. Table
2 compares the performances of the proposed algorithm and
the conventional algorithms ([2], [5]) at the various bit reso-
lutions of pre-quantization. Conventional connectivity com-
pression algorithms are not affected by the resolution of the
geometric pre-quantization, since they separate the connec-
tivity from the geometry. But, since the proposed algorithm
employs the geometry information to compress the connec-
tivity information, the performance depends on the geomet-
ric pre-quantization resolution. It can be seen that, if the res-
olution of the pre-quantization step is low, the performance
of the proposed algorithm is comparable to the conventional
algorithm in [5], since the 3D mesh model is too coarse
to exploit the geometric constraint information. However,

Table 2. The experimental results of the proposed algorithm
compared to previous methods for various pre-quantization
resolutions.

3D mesh | Ver- [2] [5] Proposed (bpv)

model tices || (bpv) | (bpv) || 8bit | 10bit | 12bit
bunny 34835 || 2.84 1.56 || 1.61 | 1.34 | 1.26
pieta 3476 || 5.83 | 529 || 482 | 4.68 | 4.66

for the “Bunny” model, if the pre-quantization resolution is
more than 12 bits per coordinate, the average bit per vertex
of the connectivity is lower than [2] by about 1.6 bit per ver-
tex (bpv) and than [5] by 0.3 bpv, respectively. And for the
“Pieta” model, the proposed algorithm requires about 1.2
and 0.6 less bpv than [2] and [5], respectively.

4. CONCLUSIONS

For the compression of the connectivity information of 3D
triangle mesh data, we proposed an efficient and optimized
coding algorithm using the geometric constraint. First, we
have classified four cases of the topological vertex fanout
patterns. Second, we have described the geometric con-
straint method, which is used for the prediction of the ver-
tex degree. The experimental results on several 3D triangle
mesh data demonstrated that the proposed algorithm yields
the better compression performance than the conventional
approaches [2, 5].
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