Proceedings of ITC-CSCC 2000, Pusan, Korea

Design and Implementation of Dual Kernel for Considering Hard Real-Time
Constraints.

Seung-mo Yang
Dept. of Computer Science
Semyung University
San 21-1, Shinwol-Dong, Chechon
Chungbuk Korea

ysm3333@kebi.com

Chi-ho Lin*
Dept. of Computer science
Semyung University
San21-1,Shinwol-Dong,Chechon
Chungbuk Korea

ich410@venus.semyung.ac.kr*

Hi-seok Kim**
Dept. of Electronic Engineering,
Chongju University
36 Naedik-Dong Sangdang-Gu
Chongju Chungbuk Korea

khs8391 @chongju.ac.kr**

Abstract

Because of the great variety of demands on real-time
scheduling, real-time kernel should be small, fast and
predictable. In this paper, we present that Real-time
applications should be split into small and simple parts
with hard real-time constraints.

Following this concept, we have designed and
implemented to have the properties of both hard real-time
kernel and general kernel.

And, to prove be useful the proposal kernel, we compare

and analyze the performance with RT-Linux 0.5a

1. Introduction

A real-time computer system can be define as a system
that performs its functions and responds to external,
asynchronous events within a specified amount of times[1].
Most control systems fall into this category. A real-time
operating system capable of guaranteeing timing
requirement of the processes under its control. That is,
Correct timing is the key feature. There are hard and soft
real-time systems[1]. Soft real-time systems are those in

which timing requirement are statistically defined|[2].

An example can be a video conferencing system: it is
desirable that frames are not skipped, but it is acceptable if a
frame or two is occasionally missed. In hard real-time system,
the deadlines must be guaranteed [2]. For example, if during
a rocket engine test this engine begins to overheat, the
shutdown procedure must be completed in time. One key
issue is the need to provide predictability.

In this paper, to satisfy the above requirement, real-time
kernel has designed and implemented the following properties;

predictability, fast, low interrupt latency, simple scheduler.

2. Design and Impiementation

2.1 Design and Implementation of hard Real-time Kernel

Queue
l Gn-Task |- 1 Br-Task l.
General 1 an-Task -{ Bi-Task I.Re,?;g,"e

) ‘i Gn-Task I—I -! Bt-Task I—]
1)]

Non Real-Time Real-Time

[Hardware - l
Figure 2.1 Total structure of kernel.

To stability of kernel through efficient distribution of

total work, the proposal kemnel was designed and

implemented independent between general kernel and hard
real-time kernel. real-time kernel and general kernel, that
have different properties as shown in Figure 2. 1.

Real-time kernel has the following properties. Hard
real-time task and interrupt service routines are executed in
that part. Real-time task are running in kernel mode
because the overhead of system call can be reduced
dramatically and the fast context switch is possible. the
scheduler of real-time kernel is a simple priority-based
preemptive scheduler. It is implemented as a routine that
chooses among the ready tasks with one with the highest-
priority and marks it as a next task to execute. Tasks give
up the processor voluntarily or are preempted by a higher-
priority task when its time to execute comes. There are no
tasks with the same priority, that is, one priority can be
assigned to only one task. As a result, the maximum
number of tasks executed at the same time is 256. But the 2
priority, priority 0 and priority 1, have been reserved.
priority 0 is reserved for real-time IDLE task that is
executed when there is no task to run. IDLE task does not
usually work anything, but the real-time IDLE task starts
the switcher of the general part and wait forever for next
real-time event. Priority 1 is reserved for interrupt service
associated with tasks in general kernel. it is executed by
real-time kernel when there is no real-time tasks in ready
state.

General kerenl has the following properties. Task are
running in user mode and scheduler of this part works like
the general purpose time shared operating system and is
non-preemptive, optimize the average case and maximize

the task throughput. There are tasks with the same

priority, that is one priority can be assigned to many tasks.
The tasks with the same priority level are scheduled round-
robin. priority 0 has been reserved for general IDLE task that

is executed when there is no tasks to run.

2.2 Task

This paper proposal kernel support the general tasks and
three kinds of real-time task; "interrupt task", "periodic
Task" and "asynchronous task”.

Real-time interrupt task is designed to be used for
controlling or giving/taking the service to/from the device
that informs the service request non-periodically by the
interrupt. for example, when the device has an error or a
fault, or request/service the data to process, it requests the
recovery or service to the real-time interrupt task.

Periodic task is designed to be used for controlling or
giving/taking the service to/from the device periodically. For
example, the video frame must be transferred to the memory
at every 1/30sec and processed. In this case, the associated
periodic task must be waked up at every 1/30sec and transfer
the data.

Asynchronous task is designed to be used for command or
data processing in real-time. If you need control the device
command or process the data and transfer the result to any
real-time task or general tasks in real-time, use asynchronous

task.

2.3 Scheduling
The main task of real-time scheduler is to satisfy timing
requirements of tasks[3]. Scheduler have been implemented

a priority-based preemptive scheduler. The scheduler

directly supports periodic tasks. The period and the offset is
specified for each of them. An interrupt-driven(sporadic)
task can be implemented by defining an interrupt handler that
wakes up the needed task. for periodic tasks with deadlines
equal to periods a natural way to assign priorities is given by
yhe rate monotonic scheduling algorithm[4]. According to
this algorithm tasks with shorter periods get higher priorities.
A set of n independent periodic tasks scheduled by the rate

monotonic algorithm is guaranteed to meet all deadline if

pa——)

a,.a. g, . GO W _
i ’}2+’I3+ Tnin(Z 1)

where Ci is the worst-case execution time of task I, and Ti is

|

the period of task 1. Sporadic tasks can often be treated as
periodic ones for priority assignment[5].

The scheduler treats general kemnel as the lowest priority
real-time task. General kernel only runs when the real-time

kernel has nothing to do.

2.4 Timing
Precise timing is necessary for the correct operation of the
scheduler. Timing inaccuracies cause deviations from the
planned schedule, resulting in so-called task release jitter[5].
In most applications task release has an undesirable effect. It
is important to minimize it. In this paper kernel manages time
by receiving non-periodic interrupts which is viewed
periodically on the point of view of one task from system
time base. The time generator must provide an interrupt at a

fixed interval.
In this paper, the kernel

has generalized time

management using one-shot and cyclic timers on

conjunction with semaphore[6]. Multiple timers are managed

simultaneously using an ordered list of pending timer event.

2.5 Interrupt handling

One of the problems with doing hard real-time system is
the fact that kernel uses disabling interrupts as a means of
synchronization[7].

In this paper, interrupt is happened hardware, regard as
one of external events. as happened hardware interrupt can to
be separated RT-interrupt and GN-interrupt(general event).
RT-Interrupt means that immediately process requested
service call from hardware by sensitive time. GN-Interrupt
means that happened hardware needless concept of real-
time. Here is because interrupt regard to event, RT-Interrupt
is doing wakeup task as send interrupt event to connected
task, In this point, It defined interrupt task, which received

Interrupt event.

2.6 Interprocess Communication,

Communication between both parts split out is via queue
that can be only created by real-time tasks and connected to
by the general tasks. The AQUEUE is only one directional that
is determined on creation[7].

That is data is moved from real-time kernel to general
kernel or from general kernel to real-time kernel. Also it is
determined whether tasks are blocked or not when real-time

kernel is created or connected to.

3. Experimental Results
In order to measure the performance of the proposal
kernel, We have conducted several experiments with respect

to interrupt latency and predictability[7]. The experiments

— 491 —

were performed on two performed on two IBM PC
compatible computers running Real-time Linux version 0.5a,

and the proposal kernel.

Machine 1 Machine 2
DO ' ACK
PE DO

Machine A: Pentium 133MHz, 32MB of RAM.
Machine B: Pentium 166MHz, 32MB of RAM
Figure 3.1Measuring Interrupt Latency
To measure the maximum interrupt latency, an additional
machine running the proposal kernel (Machine 1) was used
to send interrupt requests to the machine being tested
(Machine 2) and to measure the response time of the

latter(Figure 3.1).

| . Interrumt Scheduling
system latency (us) precision(us)
Machine A
RT-Linux 84 155
kernel
Machine A. the
proposal kernel 80 151
Machine B
RT-Linux 34 64
Machine B, the
proposal kernel 30 61

Table 3.1. Performances Measurements Results
To measure scheduling precision a periodic real-time task
was run. On each wake-up the current time was obtained and
compared to the estimate. Maximum deviation were
recorded. The result was seen form Table 3.1.
Overall, the results show that the proposal kernel is a

viable platform for hard real-time processing.

4, Conclusion

In this paper, we was designed and implemented small
and efficient kernel on real-time control system, and to
minimized overhead of total system through -efficient
distribution of total work, we was implemented independent
between general kemel and hard real-time kernel, not only small
but also to be compatible application field of high speed
real-time control system.

Toward, real;time control systems will be ask for fast
response time, minimum of interrupt latency and
scheduling precision. Future, expected that will be

assistance efficient expansibility of real-time control

systems.

5.Reference

[1] Borko Furht, Dan Grostick, et al. Real-time UNIX
systems: design and application guide. Kluwer Academic
Publishers Group, Norwell, MA, USA, 1991

[2] Alan Burns. Scheduling hard real-time systems: A
review. Software Engineering Journal 6(3): 116-128, 1991
[3] J. A Stankovic, "Microconception about Real-Time
Computing," IEEE Comput. vol.21, no. 10, Oct. 1988

{4] C.L Liu and J.W Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM,20(1):44-61, January 1973.

[5] Sang H. Son, editor. Advances In Real-Time Systems ,
chapter 10, pages225-248. Prentice, 1984,

[6]] JEAN J. LABROSSE, "A Portable Real-Time

Kemmel in C." p40-53, EMBEDDED SYSTEMS
PROGRAMMING, MAY. 1992.
[7] Daniel Stodolsky, J. Bradley Chen, and Brian

Bershad. Fast interrupt priority management in operating
system kernels. In proceedings of the 2™ USENIX
Symposium on and Other
Architectures. USENIX, September 1993,

[8] Michael Barabanov, “ A Linux-based Real-Time

Microkernels kernel

Operating System” , New Mexico Institute of Mining and

Technology Socorro, New mexico, June 1, 1997.

— 492 —

