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Abstract : Back-propagation neural network (BPMNN) is the most prevalently used paradigm in modeling
semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or
unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function
as a neuron activation function is investigated. The linear function was operated in combination with other
sigmoid functions. Compdrison revealed that a particular combination, the bipolar sigmoid function in hidden layer
and the linear function in output layer, is found to be the best combination that yields the highest prediction
accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally
adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and
out of them onc optimal set was determined. Predictive performance of the corresponding model were compared to
non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an
improvement of more than 30%. This demonstrates that the proposed gradient-optimized learning for BPNN with
a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a

hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate
models, another eight experiments were conducted. Process variables that were varied in the design include source
power, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe
are electron density, electron temperature, and plasma potential.
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