Real Ethernet Protocol

Hong Seong Park, Myong Soon Jung, Weon Joon Kang

Dept. of Elec. and Comp. Eng, Kangwon Natl. Univ. Kangwon-Do, 200-701. Korea
(Tel: 82-33-251-6501 ; E-mail: hspark@kangwon.ac.kr, (jms, tailhook)@control.kangwon.ac.kr)

Abstract

This paper suggests the methodology to guarantee the
real-time service over Ethernet and TCP/IP and to solve the
problems such as re-transmission due to collision and
platform-transparency and independence. This paper proposes
a new mechanism called Realtime Ethernet protocol
combined the centralized medium control mechanism with the
token passing mechanism. The centralized medium control
mechanism is used to get the token, the right to transmit the
data, and the token passing mechanism is used to return the
token to the token controller and to transmit data within the
specified time interval. The proposed Real-Time Ethernet
Protocol is based on Java and Java RMI{Remote Method
Invocation). The presented protocol is believed to work
enough in real-time applications considering latency occurred
due to the Java RMI, which is less small than data transmission
time.

1. Introduction

Ethernet(or CSMA/CD) and TCP/IP are the protocols mostly
used around the world and there are many applications based
on them. Those protocols are frequently required to be used in
and/or be applied to various industrial environments such as
Factory Automation and Process Control. Applying Ethemet
and TCP/IP to the industrial environments, there are benefits
such as low cost for constructing network system and enabling
integration of heterogeneous factory network into one network.
As a result, we can manage factory circumstance effectively
using Ethernet-TCP/IP. The factory/process control requires
real-time constraints depending on the applications. But there
is a barrier in application of Ethernet to real-time environments.
That is, the barrier is the non-deterministic re-transmission
mechanism of Ethemet when collisions occur. Moreover, those
environments require the platform+ransparent and
-independent protocol working for heterogeneous platforms
because the general factory system is the distributed system
consisting of PC, DCS, PLC, and other dedicated devices.

To cope with collision problem, there have been some
researches{(-3]. Rether(A real-time Ethernet Protocol) is a
distributed token passing protocol to solve the collision
problem at the data link layer[2]. But there were some
limitations such as the maximum number of nodes and non
platform-transparent and —independent protocol. Note that non
platform-transparent and ~independent protocol mean that the
node for real-time applications should use the specialized data
link layer designed for Rether. In [1), the combined protocol
token passing with TDMA was suggested and the software,
client-server based MAC protocol and the associated protocol
was developed. But this research has still a limitation such as
non platform<ransparent and -independent protocol and
increases the maximum number of node proposed in [2]. In [4],
the real-time fast Ethernet switch called EtheReal was
proposed, which provided bandwidth guarantees to real-time

118

applications on Ethernet without modification to H/'W and OS
on the host node. But this research requires the special switch,
EtheReal so that there can be a barrier in extension of real-time
systems. FL-net{3] is the protocol that guarantees real-time
service with 50ms period for 32 nodes and supports periodic
transmission, point{o-point and multicasting. But, all nodes
should use the speciglized FA link protocol layer aver UDP to
utilize FL-net. FL-net didn’t solve the problem of the
platform-transparency and ~independence.

This paper suggests the methodology to guarantee the
real-time service over Ethernet and TCP/IP and to solve at the
same time the problems such as re-transmission due to
collision and platform-transparency and -independence. In this
paper, to solve the problems addressed above, a new
Real-Time Ethernet Protocol based on Java, especially Java
RMI(Remote Method Invocation){5, 6}, is suggested. Basically
Java works in any platform which supports JavaOS or JavaVM.,
This paper provide the centralized medium control mechanism
with the token passing mechanism similar to profibus{7]. That
is, the centralized medium control mechanism is used to get
the token, the right to transmit the data, and the token passing
mechanism is used to return the token to the token controller
and to transmit data within the specified time interval. Those
mechanisms are implemented over TCP/IP because Java RMI
is used so that the platform-transparency and independence are
guaranteed. In addition, the Real-Time Ethernet Protocol uses
remote objects and a timer component implemented with Java
Beans. RMI is adopted to obtain the token between a token
controller(server component) and nodes(client components).
RMI enables user to access to remote object with the
transparent location of the token controller on network.

Generally, it is disadvantage that the usage of Java and RMI
results in more delays in latency time that the usage of TCP/IP
itself. But it is believed that there is little effects on reai-time
applications because the Java RMI is used only in managing
the token. And the presented protocol in this paper is believed
to work enough in real-time applications considering those
latency. In the presented mechanism, all systems can have the
proposed Real-Time Ethernet Protocol running on the Ethernet.
But it is noted that other researchers’ Protocols are always able
to work for real-time application only in the case that the
station is implemented those protocols before the system is
working.

In section 2, the state machines for the proposed Real-time
Ethernet protocol are proposed and described both in the node
side and in the token controller side. In section 3, RMI classes
and user methods for the presented Java-based Real-time
Ethernet protocol are introduced and the functions are
presented. Finally, we give some conclusions in section 4.

2. The state machine of Java-based Reai-Time Ethernet
Protocol(JaRE)

The state machines in both a node and a token controller are
shown in Fig. 1 and the interactions between the node and the
token controller are also shown in Fig. 1. Token controller

