A Model Study for Software Development Effort and Cost Estimation by
Adaptive Neural Fuzzy Inference System

Dong Hwa Kim

(Tel : 82-42-821-1170, Fax : 82-42-821-1165 ; E-mail: kimdah@tnut.ac.kr)
Department of Instrumentation & Control Eng., Taejon National University of Technology,
Yusong -gu Taejon, Korea

Abstract

Several algorithmic models have been proposed to
estimate software cost and other management parameters. In
particular, early prediction of completion time is absolutely
essential for proper advance planning and a version of the
possible ruin of a project.

However, estimation is difficult because of its similarity to
export judgment approaches and for its potential as an expert
assistant in support of human judgment.

Especially, the nature of the Norden/Rayleigh curve used
by Putnam, renders it unreliable during the initial phases of the
project, in projects involving a fast manpower buildup, as is
the case with most software projects.

Estimating software development effort is more
complexity, because of infrastructure software related to
target-machines hardware and process characteristics should
be considered in software development for DCS (Distributed
Control System).

In this paper, we propose software development effort
estimation technique using adaptive neural fuzzy inference
system. The methods is applied to case-based projects and
discussed.

2. Introduction

Several algorithmic models have been proposed to estimate
software cost and other management parameters:
- Putnam's SLIM model
- Jensen model

- Checkpoint
- RCA Price-S
- COCOMO, COCOMO-1I
- etc.
These methods are models by crisp approaches.

Approaches by intelligent method (fuzzy, neural, Hybrid
method) are a few things among thing I found until now. So, I
guess it is a valuable one if I study approaches by intelligence
technique step by step. There are few method S/W cost
estimation model until now. There are many kinds of
characteristics of influence function to cost estimation.

Estimating technology of software costs is important
because of the overall magnitude of these costs and the
fundamental influence software will have on our future as well
as present of life. That is, underestimated costs may convince
manager to approve proposed projects that then exceed their
budgets and thus fail to produce their expected advantages.

On the other hand, overruns can damage software
management's credibility and stile future general management
support. If general management is cancelled before completion
because of overruns or underestimated methods, it might be
wasted the resources invested in them [1, 2].

Software cost estimations include system size and
complexity, personnel capabilities and experience, hardware
constraints, the use of modern software tools and practices. So,
it is more of an art or engineering than a science [3].

The proposed models estimation are many, but usually too
restrictive to apply across a wide range of projects even though

376

considerable analysis of empirical data collected over
long periods of time have done, since most models for
software cost estimation are definable in terms of a
mathematical algorithm and can thus be termed algorithmic
models.

We can classify these algorithmic models used for
software cost estimation as follows [4]:

- Linear models or mathematical models that try and fit a
simple algorithm to the observed data;

- Multiplicative models that express effort as a product of
constants with various cost drivers as their exponents;

- Analytic models that usually express effort as a function
that is neither linear nor multiplicative;

- Tabular models that represent the relationship between cost
drivers and development effort in a matrix form;

- Composite models that use a combination of all or some of
the aforementioned approaches.

During the last two decades, many software estimation
models have been developed to accurately predict the cost of a
software project model such as, SLIM (Software Life cycle
Model), Jensen model, Checkpoint, RCA Price-S, COCOMO,
COCOMO-II because their precise mathematical definition
makes it easy to implement them on a computer [2~3].

Two such composite models among them widely used in
industry are the Price-S model and Putnam's SLIM model.
Besides the IBM model, Doty model, the Boeing model, the
Estimacs model has been provided.

Since the methodologies of the Price-S model are largely
unpublished, it has some unavailable things for scrutiny and
subsequent improvement,

The Putnam model can be used in process analysis to
assess the impact of a tightened schedule, and to predict long
term software costs and portable completion times through
straightforward curve-fitting techniques. However, its
capability in predicting development time and total manpower
requirements at an early stage is not satisfactory.

The COCOMO model proposed by Boehm can provides a
combination of various functional forms made to the user in a
structured manner.

Both the Putnam and the COCOMO models use the
Rayleigh distribution based on the observation by Norden as
an approximation to the smoothed labor distribution curve for
cost estimation.

The Rayleigh distribution provides a good approximation
of the manpower curve for various hardware development
processes. However, the slow manpower buildup and the long
tail-off time curve is not in accordance with the labor curves of
most organic-mode of software cost estimations.

Software technologies generally have a faster buildup rate
than hardware technologies, and this is a deviation from the
Rayleigh curve. To compensate for this the COCOMO model
uses only the central portion of the Rayleigh curve to arrive at
the labor estimating equation. An alternative model to the
Rayleigh curve was proposed by Parr[]

Many of the previous articles on software cost estimating
have largely focused on estimating techniques. These
techniques may suggest the view that the only important
consideration in estimating accurately is the basis of the

