Purification and Characterization of Anticoagulant Protein from Ark Shell, Scapharca broughtonii

  • Jung, Won-Kyo (Department of Chemistry, Pukyong National University) ;
  • Park, Pyo-Jam (Department of Chemistry, Pukyong National University) ;
  • Kim, Se-Kwon (Department of Chemistry, Pukyong National University)
  • Published : 2000.05.01

Abstract

The physiological systems that control blood fluidity are both complex and elegant. Blood must remain fluid within the vasculature and yet clot quickly when exposed to nonendothelial surfaces at sites of vascular injury. There are two principle mechanisms to control a delicate balance in higher organisms (Davie & Ratnoff, 1964). Present evidence suggests that the intrinsic pathway play an important role in the growth and maintenance of fibrin formation in the coagulation cascade while a second overlapping mechanism, called the extrinsic pathway, is critical in the initiation of fibrin formation. Coagulation factors is in two mechanisms, and in order to clot blood, they are activated by a cooperation with $Ca^{2+}$, phospholipid and vitamin K etc. For example, the human placental anticoagulant protein (PAP of PAP- I), which is a $Ca^{2+}$ -dependent phospholipid binding protein (Funakoshi et al., 1987) inhibited the activity of factor Xa, so that it prolonged fibrin formation. We wondered whether any other protein was involved in regulation of the coagulant system as an anticoagulant protein from natural organisms. Natural agents would have not harmful side-effects in comparision with chemically synthesized materials such as warfarin, aspirin, phenindione, etc.. But anticoagulant agents from natural, especially marine organisms have hardly been researched except for polysaccharides from marine algae. (omitted)

Keywords