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Abstract

A splitting method for the direct numerical simulation. of solid-liquid mixtures is presented, where a
symmetric pressure equation is newly proposed. Through numerical experiment, it is found that the newly
proposed splitting method works well with a matrix-free formulation for some bench mark problems avoiding
an erroneous pressure field which appears when using the conventional pressure equation of a splitting
method. When deriving a typical pressure equation of a splitting method, the motion of a solid particle has to
be approximated by the ‘intermediate velocity’ instead of treating it as unknowns since it is necessary as a
boundary condition. Therefore, the motion of a solid particle is treated in such an explicit way that a particle
moves by the known form drag (pressure drag) that is calculated from the pressure equation in the previous
step. From the numerical experiment, it was shown that this method gives an erroneous pressure field even for
the very small time step size as a particle velocity increases. In this paper, coupling the unknowns of particle
velocities in the pressure equation is proposed, where the resulting matrix is reduced to the symmetric one by
applying the projector of the combined formulation. It has been tested over some bench mark problems and
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gives reasonable pressure fields.

1. Introduction

For the last two decades, the segregated finite
element method has emerged as  one of the useful toois
to simulate large scale flow problems mainly becausé' it

s effective in memory use. However, with respect to the
direct numerical simulation of fluid-particle mixtm;e
flows based on an unstructured mesh, there is no
reported result from the segregated finite element method
yet. As far as the author knows, only Glowinski et al. [1]
adopted a theta scheme( a variation of the fractional step
method) _for the finite element direct numerical

simulation of solid-liquid mixture flows. It is based on a
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structured background mesh and uses a Lagrangian
multiplier to impose the constraint of a solid particle
motion.

Hu [2] developed a direct numerical simulation finite
element code based on an unstructured mesh for fluid-
particle problems. Johnson and Tezduyar [3]\ also solved
the same probleins based on the diﬁ'ex"ent formuation.
Both studies use an integrated formulation, where both
velocity and pressure are obtained at the same time by
solving the global system of the Navier-Stokes eéuations.
Note that Johnson and Tezduyar use P1P1 element with a
stabilized  finite element method and Hu uses a
conventional mixed P2P1 element with the combined
formulation for the implicit treatment of a particle’s
motion. While Hu used an ALE formulation for the
simulation of a moving grid ( partiéle ), Johnson and
used DST/ST ( Deforming-Spatial-
Domain/Space-Time )' procedure [4]. In the 'autl’lor’s

viewpoint, there are two additional important differences

Tezduyar
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between the ‘two- studies. First, the method of Johnson
and Tezduyar allows the use of an. effectrve dragonal
precondmomng due to the stabllrzed finite element
formulation, but Hu’s method has a difficulty in using 2
diagonal preconditioning [5] since the mixed finite
element formulation of the Navier-Stokes equations
generates the‘ unsymmetric saddle point problem.
Consequently, in the view point of a parallel computation
Hu’s formulation has some weak points compared to the
Johnson and Tezduyar’s approach. For more details of
the problems related to the parallel computation of Hu’s
method, see the reference [S]. Secondly, Hu’s method
uses the combined formulation proposed bybHesla [6] for

a ‘coupled’ fluid-particle system , where the force acting

on a particle surface by a fluid need not be calcaulted -

explicitly since the force is implicitly linked with the
particle velocity variables in terms of the fluid
variables ( velocity and pressure). On the other hand, in
the method of Johnson and Tezduyar the coupling
between the fluid variables and the particle variables is
achieved by updatmg the partlcle position and velocrty
based on the fluid forces acting on the particle surface,
which is calculated at each non-linear iteration within
each trme step.

In the present study, a splitting method for the
combmed mrxed ﬁmte element formulation of fluid-
partrcle problem is developed and tested with a matrix
free approach The main dlfference of the present method
from exrstmg sphttmg methods lies in denvmg the
SPD( symmetnc posrtlve deﬁmte) pressure equation. The
ue_w'SPD pressure; equation is proposed for the splitting
me‘t‘hod' of the combined ’ﬁnite element formulation for
ﬂmd—parhcle problems and tested over the well known
two drmensronal benchmark problems They are the
srngle cylmder sedrmentauon in a channel, 2 parncle
sedrmentatron ina closed box wrth drafting, kzssmg and
tumblmg [7] and 100 partlcle sedlmenmtrou ina closed
box. The newly proposed pressure equatlon for the
combmed formulatron of ﬂuld-partmle problem grves
sansfactory results for the benchmark problems with a

diagonal . preconditioning thus. enabling us to ‘use: a
matnx—free approach

In Section 2,a summary of the splitting method.
for the combined formulation of fluid-particle problem is
giveh and in Section 3, a pressure equation for the
combined formulation is proposed and drscussed Fmally,
in Section 4, typical benchmark problems are tested to
verify the developed splitting code.

2. Numerical Method

There are many kinds of split methods ( projection
method or fractional step method) depending on time
marching methods ( explicit , implicit or semi-implicit ),
the accuracy of the temporal discretization, or how to
get a pressure equation from the divergence free
constraint. In the preseut study, a four step fractional step
method [8] is used with P2P1 mixed finite element and
the second order accurate fully implicit Crank-Nicolson
time marching scheme is used. In the first step of the
present fractional step method, the Navier-Stokes
equations coupled with the Newton’s law of a solid
particle motion are solved, where the pressure term is
decoupled from those of convection, diffusion and other
external forces. At this step, the intermediate velocity i
is obtained, which does not necessarily k satisfy the
continuity ‘equation. Hence, at the following 'step,‘the
pressure is to be obtained from the continuity constraint

and the velocity is corrected by that pressure field.

In the first step, the following set of equations are to
be solved.

ui—u: 1“'»“ L3 n "
A ‘+'2'“iut/+'_“1u:/ =G, +0;;+S
. 0))
UP—U;
M =G, +F,
U, m 0.0
Uu,=|v,|, M={0 m 0 for the two
o 0 0 I
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dimensional case
, where 4, is the ‘intermediate velocity’, -, is the
fluid velocity in the previous time step, u,' =u —u;, is

the convection velocity in ALE formulation with a grid

n

velocity u, , S, =externalforces , G,

is external
force acting on the particle, F, is the force acting on the

particle surface by the fluid that is not necessary to be
calculated due to the combined formulation used in the
present study, m is the mass of the particle and I is
the moment of inertia of the particle. Since the fluid is

Newtonian, G, =vD, (1) /2 and

o= p"i +vD,(u")/2, where p is the pressure, V is
the kinematic viscosity (constant in the present study),

and D, (%) is the rate of strain tensor. Note that the

linearized convection term is used in the present study to
avoid the nonlinear iteration. In the present study, the
combined formulation by Hesla [6] is used for the fluid-
unlike
. conventional -split methods, all velocity components are
Galerkin

formulation of the above equation can be written as

particle mixture - simulation. - Therefore,

calculated in a coupled manner. The

follows:

Find u/(%,t)e H,(Q),UeRxRandoweR  such
that

E u“h_un :
j[w?( C L O0.5*TE +0.5%T u" )+
i At J i,
e .

VW' () +o))ldQ-[w! (G, +aIn,dl ()
] v

du,
ar

+3.8U,(M —=-G,)=[w!§/dQ
P Q

for all admissible weight function ~ w' e ¥, with

the following boundary conditions

u=g onl,

on=h onl,

u=U,+0,x(x-X,) onl

where, R is the normal vector to the boundary Fh
and the X is the coordinate of a node on the particle

surface I » and X » is the coordinate of the center of

the particle and
V, ={w,|w, € H,(Q),w, =0onT,,w, =8U +
dw,x(x-X,)onT, forp=1,.. N}
For more details of the weak formulation of the
combined approach, see references [2,6]. © Therefore, in

the first step the resulting matrix is written as follows:

A E
&

D: diagonal matrix

E: sparse matrix from the kinematic constraint

C: matrix from combined formulation. -

Note that - the block A becomes a symmetric matrix
for the semi-implicit method, where the convection term
is treated in a explicit way. In the second step, the

following set of equations are to be solved.

u —u, 1
T =+—p" 4
v pp,, C))
U;: _Up -F
At i
mixture problem

In the modified splitting code, the velocities of
particles are solved with fluid Variables in a coupled way
so that the motion of the particles can be-linked with the
pressure equation implicitly. The governing equation is

the coupled equation for u,,U,, p at time step n+1.
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u —u. _ 1 a+l (8)
At - p P
Un+l -—U:
Mt _—=F
dt
u =0

the combined
formulation of fluid-particle problem, the resulting

Applying a weak formulation for

matrix is
M -B El|u, I,
B" 0 Ofp|=j0 &)
¢, C, DIU Je

where M is mass matrix and B is gradient matrix. Note
that the resulting matrix is an unsymmetric one due to
the combined formulation. On the other hand, a
symmetric matrix corresponding to Eq. (9) can be
obtained using the projector proposed by Maury and
Glowinsky [9]. In their approaches, the fluid velocity
variables are divided into internal variables and variables
on the particle surface, u =[u,,u.]. Then, the resulting
. matrix  for the combined formulation is written as

follows:

HNHNY

~ D+P'M_P ! ~ '
where, M = P P My B= ,P B
M,P . M, B,

withu. =PU and u =[U u,]’

-3. Numerical Results

In order to verify the proposed algorithm, single
cylinder sedimentation in a two dimensional channel, the
sedimentation of two cylinders in a closed box and the
sedimentation of 100 cylinders in a closed box are
selected as the two dimensional benchmark problems. In
the single cylinder sedimentation case, the density of the

particle is 1.01 , the density of fluid is 1.0, kinematic
viscosity is 0.01, the channel width is 20.0 and the
particle diameter is 0.5 in CGS units. Fig. 1 (a) shows the
configuration of the particle and the finite element mesh
at the selected time step with the boundary conditions
used. The number of préssure unknowns is about 3,300,
the number of velocity nodes on the particle surface is
100, and the Reynolds number based on the diameter, the
average terminal velocity of the particle -and the
kinematic viscosity of the fluid is about 122. Note that in
the present paper, only vertex nodes (nodes for-pressure
variables in P2P1 element) are shown in all unstructured
mesh figures, so the mesh resolution for the velocity
variables of an unstructured mesh is about 4 times larger
than that shown in the corresponding figure. Since the
ALE formulation is adopted in the present study, the
entire computational domain is moving to the streamwise
direction (gravity direction) ~with the streamwise
direction velocity of the particle at each time step. Fig. 1
(b)~(d) show the isobars, streamlines and isovorticity
lines at the selected time. In Fig. 1 (d), the dotted lines
represent the negative isovorticity lines. Fig. 2 shows the
time histories of translation and angular velocities of the
sedimenting single cylinder. From the Fig. 2, the period
of the oscillation of the sedimenting c&linder is 1.343
sec ( 0.745 Hz ) and the corresponding: Strouhal number
is 0.152. Note that (i}the case of the periodic vortex
shedding around the fixed cylinder, the corresponding
Strouhal number is 0.175 from Swanson [10].

Inlet zero velocity B.C.

H
H
§
O
s
g ¢
2

Wall B.C.

Fig. I (¢) Isobars (t=32sec)

Fig. I (a) Unstructured mesh (t=32sec)

Fig. I () Streamlines (=32sec) Fig. 1(d) Isovorticity lines (1=32sec)
Fig..1 Single cylinder sedimentation in a channel
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The second simulation is done to see the well known
drafting, kissing and tumbling scenario [7]. In this case,
the density of the particle is 1.02 , the density of fluid is
1.0, kinematic viscosity is 0.01, the box size is 4 X 20 and
particle diameter is 0.5 in CGS units. Fig. 3 shows the
configurations of two cylinders and the corresponding
finite element meshes at various time steps. From Fig. 3,

we can see the well known drafting, kissing and
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Fig. 2 The time histories of translation and angular velocities of the sedimenting cylinder

© Fig. 3(d) 1=2.25
Fig. 3 Unstructured meshes at various time steps

tumbling phenomenon. Fig. 4 shows the two cylinders’
position and isobars at the selected time steps. Fig. 5
shows isovorticity lines at the selected time steps. In this

simulation, the number of pressure unknowns is about

5,500, and the number of velocity nodes on the particle
surface is 100 at minimum. The maximum Reynolds
number based on the diameter, the translation velocity of
the particle and the kinematic viscosity-of the fluid is

about 270 during the entire simulation.

B\ | LA
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\\Fig.lm.ﬁ \EE. 4@ é5

Fig. 4 Streamlines at various time steps
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Fig. 5 (b) =10

;’5"'g.\\5 (a) t=0.

Fig. 5 (c) 1=1.65 Fig’5 @) t$:25

Fig. 5 Isovars at various time steps

4. Conclusion

In this paper, a fractional step method for the
combined formulation of the fluid-particle mixture
problems is presented. It has been shown that a new SPD
( symmetric positive definite ) pressure equation should
be used in order to get reasonable pressure fields in the
present study. From the test of the benchmark problems,
the proposed splitting method gives reasonable results

reproducing the well known drafting, kissing and
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- tumbling - scenario. Various preconditioners for the SPD

pressure-equation are to be studied.
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