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ABSTRACT
We can obtain SLLN’s for fuzzy random variables with respect to the
new metric d; on the space F(R) of fuzzy numbers in R. In this paper, we
obtain a SLLN for convex tight random elements taking values in F(R).
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1. INTRODUCTION

The concept of a fuzzy random variable was introduced as a generalization
of random sets in to represent relationships between the outcomes of a random
experiment and inexact data. Limit theorems for sums of independent fuzzy ran-
dom variables have received much attentions because of its usefulness in several
applied fields. This paper concerns with the strong law of large numbers which
is one of limit theorems.

Strong laws of large numbers for sums of independent fuzzy random variables
have been studied by several people, Kruse (1982), Miyakoski and Shimbo(1984),
Klement et.al.[11], Inoue [5], Hong and Kim (1994), Molchanov[12], Kim [9].
Recently Joo and Kim [7] generalized Kolmogorov’s SLLN to the case of fuzzy
random variables. Furthermore, Joo and Kim [6] introduced a new metric d; on
the space F(R) of fuzzy numbers in R so that d; is separable and topologically
complete, and Ghil et.al.[3] characterized compact subsets of F(R) . Also, Kim
[10] proved that a fuzzy mapping is measurable iff it is measurable when consid-
ered as a function into the metric space (F(R),ds). Thus it is natural that we
ask whether SLLN for fuzzy random variables can also be obtained with respect
to the metric d;. Thanks to these results, Joo et. al.[8] could obtain a SLLN for
stationary fuzzy random variables.

In this paper, motivated by Joo and Kim [7], we establish a SLLN for convex
tight fuzzy random variables using the above results.
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2. PRELIMINARIES

Let R denote the real line. A fuzzy number is a fuzzy set @ : R — [0, 1] with
the following properties ;

(1) @ is normal, i.e., there exists € R such that t4(z) =1 .

(2) 4 is upper semi-continuous.

(3) supp @ =cl{z € R: 4(z) > 0} is compact.

(4) 4 is a convex fuzzy set, i.e., @Az + (1 — A)y) > min(a(z), d(y)) for z,y € R

and X € [0,1}.

We denote the family of all fuzzy numbers by F(R). For a fuzzy set 4, the a-
level set of @ is defined by

. {{x:”(z)Za}, 0<a<l
Ly = N
supp U, a=0.

Then it follows that % is fuzzy number if and only if L% # ¢ and L% is a
closed bounded interval for each o € {0,1]. From this characterization of fuzzy
numbers, a fuzzy number % is completely determined by the end points of the
intervals Lo = [ul, u2].

Theorem 1.1 of Goetschel and Voxman [4]implies that we can identify a fuzzy
number % with the parametrized representation {(ul,u2)|0 < « < 1}.

Now, we define the metric dy, on F(R) by

doo (1, 7) = Oiugl h(Lt, Lat), (2.1)

where h is the Hausdorff metric defined as
h(Lati, La®) = max(|ug — va; [ug = v3])-
Also, the norm ||| of fuzzy number @ will be defined as
1l = doo(@, 0) = max(fugl, [uf]).

Then it is well-known that F(R) is complete but nonseparable with respect to
the metric do . Joo and Kim [6] introduced a metric d; in F(R) which makes it
a separable metric space as follows ;
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Definition 2.1. Let T denote the class of strictly increasing, continuous map-
ping of [0,1] onto itself. For 4,0 € F(R), we define

ds(t,0) = inf{e: there erists a t in T such that
sup [t(a) —a| <€ and dwo(t,t 0 D) < €}, (2.2)
0<aLl1

where to U denotes the composition of ¥ and t.

Then it follows immediately that d, is a metric on F(R) and dy(%,9) <
deo (U, 7). The metric dy will be called the Skorokhod metric.

Theorem 3.2 and 3.4 in Ghil, Joo and Kim [3] which characterize compact
subsets of F'(R) are useful in proving the main result.

3. MAIN RESULT

In this section, we assume that the space F(R) is considered as the metric
space endowed with the metric d,, unless otherwise stated. Also, we denote by
B, the Borel o-field of F(R) generated by the metric d;.

Let (2, A, P) be a probability space. A fuzzy number valued function X :
2 — F(R) is called a fuzzy random variable if it is measurable, i.e.,

X YB)={w:X(w)eB}e A for every B € B;.

If we denote X (w) = {(XL(w), X2(w))|0 < o < 1}, then it is known that X
is a fuzzy random variable if and only if for each o € [0,1], X} and X2 are
random variables in the usual sense (See Kim [15]). A fuzzy random variable
X = {(X},X2)|0 < a < 1} is called integrable if for each a € [0,1], X} and X2
are integrable, equivalently, [ ||X||dP < co. In this case, the expectation of X is
the fuzzy number EX defined by

EX ={(EX},EX}) | 0<a<1}. (3.1)

Definition 3.1. A sequence {Xn} of fuzzy random variables is said to be convex
tight if for each € > 0 there is a convex compact subset K of F(R) such that

P(X, ¢ K) < ¢ for all n.

Now we propose our main theorem.
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Theorem 3.1. Let {X,} be a sequence of independent and convez tight fuzzy
random variables. If

sup E||X,||P < M < oo for some p > 1, (3.2)
n

then
) 1 1 o
nlggods (E;_IX,-, ;;-1 E’X,-) =0 as.

Remark 1. In the above theorem, we assume that {X’n} is convex. The
need of convexity arises from the desired condition that a convex combination of
elements {@} of K, in particular, 1 3", @;, again belong to K. It remains an
open problem whether the similar result holds if we replace convex tightness by
tightness.

REFERENCES

[1] P. Billingsley (1968), Convergence of probability measure, Second edition,
Wiley.

[2] P. Z. Daffer and R. L. Taylor (1979), Laws of large numbers for D[0,1], Ann.
Probab. 7, 85-95.

[3] B. M. Ghil, S. Y. Joo and Y. K. Kim (2001), A characterization of compact
subsets of fuzzy number space, Fuzzy Sets and Systems, 123, 191-195.

[4] R. Goetschel and W. Voxman (1986), Elementary fuzzy calculus, Fuzzy Sets
and Systems, 18, 31-43.

[5] H. Inoue (1991), A strong law of large numbers for fuzzy random sets, Fuzzy
Sets and Systems, 41, 285-291.

[6] S. Y. Joo and Y. K. Kim (2000), The Skorokhod tpoplogy on space of fuzzy
numbers, Fuzzy Sets and Systems, 111, 497-501.

[7] S. Y. Joo and Y. K. Kim (2001), Kolmogorov’s strong law of large numbers
for fuzzy random variables, Fuzzy Sets and Systems, 120, 499-503.

~140~



F34, ler

[8] S. Y. Joo, S. S. Lee and Y. H. Yoo (2001), A strong law of large numbers
for stationary fuzzy random variables, Journal of the Korean Statistical
Society, 30, 153-161.

[9] Y. K. Kim (2000), A strong law of large numbers for fuzzy random variables,
Fuzzy Sets and Systems, 111, 319-323.

[10] Y. K. Kim, Measurability of fuzzy valued functions, Fuzzy Sets and Systems,
to appear.

[11] E. P. Klement, M. L. Puri and D. A. Ralescu (1986), Limit theorems for
fuzzy random variables, Proc. Roy. Soc. London ser. A 407, 171-182.

[12] I. S. Molchanov (1999), On strong law of large numbers for random upper
semicontinuous functions, J. Math. Anal. Appl. 235, 349-355.

—-141-



