TUMOR NECROSIS FACTOR (TNF)- α STIMULATES PROSTAGLANDIN (PG) F2 α PRODUCTION BY INCREASING CYCLOOXYGENASE (COX)-2 GENE EXPRESSION IN CULTURED BOVINE ENDOMETRIAL STROMAL CELLS ## Yuko KASAHARA, Yoko MIYAMOTO and Kiyoshi OKUDA Laboratory of Reproductive Endocrinology, Department of Animal Science, Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan #### Introduction In nonpregnant cows, PGF2 α is secreted from the uterus in a pulsatile manner to cause regression of the corpus luteum.¹ Recently, we have demonstrated that TNF α stimulates PGF2 α production in bovine endometrial stromal cells.^{2,3} and that an inhibitor of phospholipase (PL) A2 completely stopped the actions of TNF α , suggesting that the stimulatory effect of TNF α on PGF2 α production is mediated via the activation of PLA2 and arachidonic acid (AA) conversion.³ Furthermore, we have demonstrated that AA strongly augmented TNF α -stimulated PGF2 α production, suggesting that TNF α acts further down in the PG biosynthesis cascade. On the other hand, in rat⁴ and human⁵ endometrial stromal cells, TNF α induces the gene expression of COX-2, which is the key rate-limiting enzyme responsible for the conversion of AA. Therefore, we hypothesized that TNF α is involved in the regulation of COX-2 gene expression in bovine endometrial stromal cells as well as in rat and human endometrial stromal cells.^{4,5} In the present study, we investigated the possible involvement of COX-2 in the modulation of PGF2 α production by TNF α . #### **Materials and Methods** Endometrial Stromal Cell Culture Stromal cells obtained from bovine endometrium in the early stage of the estrous cycle (Days 2-5) were seeded at 1 x 10^5 viable cells/ml and cultured in DMEM/Ham's F-12 supplemented with 10% calf serum, 20 µg/ml gentamicin and 2 µg/ml amphotericin. When the cells were confluent (6-7 days after the start of the culture), the medium was then replaced with fresh DMEM/Ham's F-12 supplemented with 0.1% BSA, 5 ng/ml sodium selenite, 0.5 mM ascorbic acid, 5 µg/ml transferrin, 20 µg/ml gentamicin and 2 µg/ml insulin. The cells were then exposed to various stimulants for the # following experiments. Experiment 1. To determine the intracellular mechanisms of TNF α actions on the bovine stromal cells, the cells were exposed to AA (10 μ M) and/or a PLA2 inhibitor (anthranilic acid, ACA; 1 μ M) with and without TNF α (0.06nM) for 4 h. Experiment 2. To determine the effect of a COX-2 inhibitor (NS-398; 5 nM) on TNF α -stimulated PGF2 α production in the bovine stromal cells, the cells were exposed to NS-398 and/or TNF α (0.06 nM) for 4 h. Experiment 3. To determine the dose-dependant effects of TNF α on COX-2 gene expression in the bovine stromal cells, the cells were exposed to TNF α (0.006-0.6 nM) for 24 h, and the COX-2 and β -actin mRNA levels were measured by RT-PCR. At the end of each experiment, the culture media were stored at -30° C until assay for PGF2 α . The DNA content was estimated by a spectrophotometric method as described previously.⁶ DNA contents were used to standardize the results. #### Hormone Determination Concentrations of PGF2 α in the culture media were determined directly with an enzyme immunoassay as described previously.⁷ # RT-PCR Total RNA was prepared from cultured bovine endometrial stromal cells using Isogen according to the directions of the manufacturer (Nippon gene, Toyama, Japan). Levels of COX-2 and β -actin mRNAs were measured by RT-PCR. The primers for COX-2, which were designed as described by Asselin et al.⁸ were 5'-TCT TTG ACT GTG GGA GGA TAC A-3' and 5'-TCC AGA TCA CAT TTG ATT GAC A-3'. The primers for β -actin, which were designed as described by Asselin et al.⁸ were 5'-GAG GAT CTT CAT GAG GTA GTC TGT CAG GTC-3' and 5'-CAA CTG GGA CGA CAT GGA GAA GAT CTG GCA-3'. The conditions for the PCRs were as described previously.⁹ PCR was conducted for 30 cycles using an annealing temperature of 54°C. # Statistical Analysis The data are shown as the mean \pm SEM of values obtained in 3 separate experiments. The statistical significance of differences in each experiment was assessed Figure 1. Effects of AA and ACA (a PLA2 inhibitor) on TNF α -stimulated PGF2 α production by stromal cells (mean±SEM, n=3). AA (10 μ M), ACA (1 μ M) and TNF α (0.06 nM) were added 4 h before the end of culture. All values are expressed as a percentage of the control value. Different superscript letters indicate significant differences (P<0.05), as determined by ANOVA followed by Fisher's multiple comparison test. by ANOVA followed by Fisher's multiple-comparison test. #### Results and Discussion In the present study, TNF α stimulated PGF2 $\frac{3}{2}$ production in the cultured bovine endometrial stromal cells (P<0.05; Figure 1), and ACA completely stopped the actions of TNF α . (P<0.05; Figure 1). Since it is generally accepted that PLA2 stimulates intracellular AA accumulation, the failure of TNF α action on PGF2 α production in the stromal cells treated with ACA might be due to a lower accumulation of AA. On the other hand, AA strongly augmented TNF α -stimulated PGF2 α production. (P<0.05; Figure 1). These results are consistent Figure 2. Dose-dependent effects of TNF α on PGF2 α output by cultured bovine stromal cells (mean±SEM, n=3). TNF α (0.006-0.6 nM) was added 24 h before the end of culture. All values are expressed as a percentage of the control value. Different superscript letters indicate significant differences (P<0.05), as determined by ANOVA followed by Fisher's multiple comparison test. with our previous report.³ In the present study, ACA showed no significant effect on PGF2 α production augmented by exogenous AA. Furthermore, whereas the activation of PLA2 was completely stopped by ACA, TNF α stimulated PGF2 α production in stromal cells treated with AA and ACA. Based on these findings, we postulate that TNF α also influences the metabolism of AA. On the other hand, NS-398 (a specific inhibitor of COX-2) blocked the TNF α -induced PGF2 α production, whereas NS-398 showed no significant effect on basal PGF2 α production [data not shown]. Moreover, at concentrations of 0.06 and 0.6 nM, TNF α had significant effects on PGF2 α production (P<0.05; Figure 2). In addition, at the same concentrations of TNF α , COX-2 gene expression was also increased (P<0.05; Figure 3). Therefore, TNF α may also act on PGF2 α production in the stromal cells by stimulating the synthesis of COX-2, which is known as a PGH2 synthase. The overall results of the present study suggest that TNF α stimulates PGF2 α production not only by the activation of PLA2 and AA conversion but also by increasing COX-2 gene expression in cultured bovine endometrial stromal cells. Figure 3. COX-2 mRNA expression in response to TNF α in stromal cells (mean±SEM, n=3). TNF α (0.006-0.6 nM) was added 24 h before the end of culture. Different superscript letters indicate significant differences (P<0.05), as determined by ANOVA followed by Fisher's multiple comparison test. # Acknowledgements We thank the Dainippon Pharmaceutical Co. Ltd. (Osaka, Japan) for recombinant human TNFα and Dr. Seiji Ito of Kansai Medical University, Osaka, Japan for antiserum of PGF2α. ### References - 1. Poyser NL. (1995) Prostaglandins Leukot Essent Fatty Acids. 53, 147-195. - 2. Miyamoto Y., Skarzynski DJ. and Okuda K. (2000) Biol Reprod. 62, 1109-1115. - 3. Skarzynski DJ., Miyamoto Y. and Okuda K. (2000) Biol Reprod. 62, 1116-1120. - 4. Arslan A. and Zingg HH. (1996) Prostaglandins 52, 463-481. - 5. Chen DB., Yang ZM., Hilsenrath R., Le SP. and Harper MJ. (1995) Hum Reprod. 10, 2773-2780. - 6. Labarca C. and Paign K. (1980) Anal Biochem. 102, 344-352. - 7. Uenoyama Y., Hattori S., Miyake M. and Okuda K. (1997) Biol Reprod. 57, 723-728. - 8. Asselin E., Lacroix D. and Fortier MA. (1997) Mol Cell Endocrinol. 132, 117-126 - 9. Murakami S., Miyamoto Y., Fujiwara C., Takeuchi S., Takahashi S. and Okuda K. Mol Reprod Dev. (in press).