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ABSTRACT

In this study, the recently developed unscented Kalman filter (UKF) technique is studied for identification of
nonlinear structural dynamic systems as an alternative to the extended Kalman filter (EKF). The EKF, which was
originally developed as a state estimator for nonlinear systems, has been frequently employed for parameter
identification by introducing the state vector augmented with the unknown parameters to be identified. However,
the EKF has several drawbacks such as biased estimations and erroneous estimations especially for highly
nonlinear dynamic systems due to its crude linearization scheme. To overcome the weak points of the EKF, the
UKF was recently developed as a state estimator. Numerical simulation studies have been carried out on
nonlinear SDOF system and nonlinear MDOF system. The results from a series of numerical simulations indicate
that the UKF is superior to the EKF in the system identification of nonlinear dynamic systems especially highly
nonlinear systems.

1. INTRODUCTION

For the purpose of damage assessment it is desirable to identify severity as well as location of the damage based
on the input-output measurements. Numerous techniques are available for the recursive estimation to time-
varying parameters. Many of these methods fall in the category of Least-Square Method. Unlike those methods,
the equation of motion can also be represented in the states-space formulation, where the stiffness and damping
matrices of the dynamic system become the unknown system parameters. For this identification problem, the
extended Kalman filter technique (Yun and Shinozuka, 1980 and Hoshiya and Saito 1984) has been frequently
employed to estimate the system parameters. Although the EKF inherits the fancy feature of optimal estimation
of linear Kalman filter under the existence of process and measurement noises, owing to its crude linearization
scheme the EKF has several drawbacks as following

1. Linearization can produce highly unstable filter performance if the time step intervals are not
sufficiently small.

The derivations of the Jacobian matrices are nontrivial in most applications and often lead to significant
implementation difficulties.
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3. Sufficiently small time step intervals usually imply high computational overhead as the number of
calculations demanded for the generation of the Jacobian and the predictions of state estimate and
covariance are large

Furthermore, due to the complex nature of civil infrastructures and noise-polluted measurement, there are many
difficulties to apply the Kalman filtering technique and researches on improving the performance of Kalman filter
have been carried out for the last two decades.

To overcome the weak points of the EKF, the UKF was recently developed as state estimator. The UKF
generates a set of points, which captures the mean and covariance information, and accomplishes prediction
process by using mapping those points through the nonlinear dynamic and observation equations under
consideration, hence it does not require linearization process.

The purpose of this study is to investigate the performance of the UKF, which is originally developed as state
estimator, for identification of nonlinear structural dynamics in comparison with the EKF based on a series of
numerical simulation studies.

2. NONLINEAR SYSTEM IDENTIFICATION USING KALMAN FILTER

In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear
filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been
the subject of extensive research and application. The Kalman filer is a set of mathematical equations that
provides an efficient computational (recursive) state estimation solution.

Kalman filter possesses useful feature for parameter estimation. In the absence of system parameters
information, Kalman filter can estimates system states and system unknown parameters such as damping
coefficient, natural frequency by introducing the state vector augmented with the unknown parameters to be
identified based on the input-output measurements. System identification using Kalman filter has became a
branch of application of Kalman filter.

For system identification problem the dynamic and/or measurement equations are always nonlinear, the
extended Kalman filter (EKF), which is nonlinear version of linear Kalman, has been frequently used for the
purpose of system identification. But The EKF employs crude linearization scheme, which make use of 1st order
term of Taylor series expansion of dynamic and measurement equations, several drawbacks occur as described
already.

To avoid drawbacks of the EKF, the Unscented Kalman filter was recently developed by Juiler at al for states
estimation problems. In this section, theoretical backgrounds will be described in more details.

2.1 LINEAR KALMAN FILTER

The Kalman filter addresses the general problem of trying to estimate the states £ € R™ of a discrete-time
controlled process that is governed by the linear stochastic difference equation

ok + 1| k) = Ax(k | k) + Bu(k) + w(k) m
with a measurement 2 € R™ that is

2(k) = Hz(k | k) + v(k) 2)

w(k) u(k)

The random variables and represent the process and measurement noise (respectively). They are
assumed to be independent (of each other), white, and with normal probability distributions

p(w) ~ N(0,Q) 3)
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p(v) ~ N(O,R) 4)

The n x n matrix A in the difference equation (1) relates the states at time step k to k + 1, in the absence
of either a driving function or process noise. The n x ! matrix B relates the control input u € R to the states
z.The m x n matrix H in the measurement equation (2) relates the states to the measurement (k) .

The Kalman filter gives optimal recursive solution in the sense of minimum variance of estimation and consists
of two step structure, i.e. time updates (“prediction”) which predicts the states based on system dynamic equation
and measurement update (“filtering”) which updates predicted values based on measurement information. The
schematic diagram of recursive structure of Kalman filter is shown in Fig.1 and the Kalman filtering equation is
shown Fig.2.

The Kalman filter, which is originally a state estimator, can be employed for parameter identification by
introducing the state vector augmented with unknown parameters to be identified. These unknown parameters
converges to true value of system parameters while Kalman filtering proceeds based on input-output
measurements with initial guesses of x(0]0) and P(0|0).

Ek+1|k+1)
A D Filtering
. Prediction ik +1]k)
0 (k| k)
3]
i
n
T —» Time
k E+1
2(k) 2(k + 1)

Fig.1 Recursive structure of Kalman filter

Initial estimates for
x(k| k) and P(kik)

Time Update("Prediction”) Measurement Update("Filtering") JI
(1) Project the state ahead (1) Compute the Kalman gain
x(k+1| k)= A(k)x(k | k)+ Bu(k) K(k+1)= Pk +1] )Hk + Y [H(k + )P+ 11 )HE+1Y + Rk +D]
(2) Project the error covariance ahead (2) Updates estimate with measurement z(k)
Plk+11k) = A(kYPUk+ 1| k) AR) +Q(k) x(k+1k+1)=x(k+1] &)+ K(k)[z(k + 1)~ H(k + Dx(k +1] £))
{3) Update the error covariance
Pk+Uk+ D)=/ -K(k+DH{(k+DIP(k+11k)

N

Fig.2 A complete picture of the operation of the Kalman filter

2.2 THE EXTENDED KALMAN FILTER
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Let us assume that our process has a state vector z € R", but that the process is now governed by the nonlinear
stochastic difference equation.

z(k + 1) = f(z(k),u(k), w(k)) (%)
with a measurement z € R™ that is
z(k) = Mz(k), v(k)) (6)

where the random variables w(k)and wv(k) again represent the process and measurement noise as in (3) and (4).
The nonlinear function f(e) in the difference equation (5) relates the state at time step % to the state at step
k +1. It includes as parameters any driving function u(k)and the zero-mean process noise w(k). The
nonlinear function A(e) in the measurement equation (6) relates the state x(k) to the measurement z(k).

In something akin to a Taylor series, one can linearize the estimation around the current estimate using the
partial derivatives of the process and measurement functions to compute estimate even in the face of nonlinear
relationships as following

ok +1) = &k + 1] k) + A(z(k) ~ 2(k | k) + Wuw(k)

@)
z(k) = #(k) + H{z(k) — &(k | k — 1)) + Vu(k) @)
where #k +1|k) = f(&(k | k),u(k),0), (k) = W@k | k£ —1),0)
df.
A= | LG | 8)uk)0) W = ;%{”—}(ﬁ(k | 6),u(k),0)
(1] 7
H :igiji(i(klk—l),O) V = ?}—(a‘:(k |k —1),0)
T v,

ls 14
When linearized system matrix A, W, H and V is calculated based on above equations, one can proceed
the Kalman filtering process with same formulas as shown in Fig.2 for linear Kalman filter. It’s worthwhile to
note that the EKF employs only 1* order term in the Taylor series expansion. Hence it may cause erroneous
estimations especially for highly nonlinear dynamic systems due to its crude linearization scheme.

2.3 THE UNSCENTED KALMAN FILTER

The UKEF is originated from the following intuition: “With a fixed number of parameters it should be easier to
approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear function”. Following this
intuition the UKF uses a parameterization, which captures the mean and covariance information while at the same
time permitting the direct propagation of the information through an arbitrary set of nonlinear equations. It will
be shown that this can be accomplished by generating a discrete distribution composed of the minimum number
of points which have the same first and second (and possibly higher) moments, where each point in the discrete
approximation can be directly transformed. The mean and covariance of the transformed ensemble can then be
computed as the estimate of the nonlinear transformation of the original distribution while it is computed based
on linearized system dynamic equation in the EKF. The UKF process doesn’t employ the crude linearized
scheme in prediction procedure but employs the equivalent formulation for filtering procedure with the EKF. The
general procedure is illustrated in Fig.3.
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Fig.3 Basic idea of the unscented Kalman filter

Given an n -dimensional Gaussian distribution having covariance P, one generate a set of O(n) points having
the same covariance from the columns (or rows) of the matrices ++/nP (the positive and negative roots). This
set of points is zero mean, but if the original distribution has mean Zz, then simply adding Z to each of the
points yields a symmetric set of 2n points having the desired mean and covariance. Because the set is symmetric
its odd central moments are zero, so its first three moments are the same as the original Gaussian distribution.
This is the minimal number of points capable of encoding this information. On the other hand, a random
sampling of points from the distribution will generally introduce spurious modes in the transformed distribution
even if the set of sample points has the correct mean and covariance. In a filtering application these modes will
take the form of high frequency noise that may completely obscure the signal.

To restate the general problem, we have the mean Z(k | k) and covariance P(k | k) of the state at time &
and would like to predict £(k +1| k) and P(k +1|k) through the nonlinear function f(s). The basic
method are summarize as follows:

1. Compute the set o.(k | k) of 2n points from the columns of the matrices + /uP(x [£). This set is zero
mean with covariance P(k | k). Compute a set of points with the same covariance, but with mean
&(k | k), by translating each of the points as x,(k | k) = o (k| k) + 2(k | k).
2. Transform each point through the state dynamics equations as x,(k + 1| k) = f(x,(k | k), u(k)) .
3. Compute #(k +1|k) and P(k + 1| k) by computing the mean and covariance of the 2» points in the
set x,(k+1[k).
The process noise is injected into the state transition model by adding a dynamic noise covariance matrix Q(k)
to P(k | k) before the sigma points are calculated. To predict 2(k + 1| &) and P, (k + 1| %) we apply the
same intuition to h(e) using the set of projected sigma points x;(k + 1| k)
The basic method is generalized in two ways. First, any of the infinite number of (not necessarily square) matrix
square roots can be chosen. If the orthogonal matrix square root is chosen, then the sigma points lie along the
eigenvectors of the covariance matrix. Second, if copies of the prior mean Z(k | k) can be included in the set of
sigma points. Although the mean of the sigma points is unaffected, the distribution of the points is scaled (since
they are now found from +./(n + ~)B(k | k))- In certain circumstances this scaling leads to improvements in
performance.
The general formulation of the new filter is summarized in Table 1.
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Table 1 General formulation of the unscented Kalman filter

1. The set of translated sigma points is computed from the n x n matrix P(k | k) as

o(k | k) «— 2n columnsfrom =+ ./(n + )Pk | k)
Xo(k | k)= &(k | k),
x, (k1 k)= o/k|k)+ &k |k

2. The predicted means is computed as

#k+1|k) =

2n
{nxo(k 10k + %;xl(k +11 k)}

n+kK

3. And the predicted covariance is computed as

Pk +1|k) =

g + 1K) = 3+ 1R Dk + 11 8) — 30k + 11 KT

2n
+§Z[xl(k F11 k) — &k + 1K) (x,(k+1] k) — &k +1] K]}

4. The predicted observation is calculated by

ik +1]k) =

2n
[nZO(k F11R)+ %Zzz(k +1] k)}
i=1

n+k
5. And the covariance is determined by

Pzz(k+1|k)=

n+n{m[zo(k+1lk)—z”(k+1|k)][ZO(k+1Ik)—2(Ic+1|k)]T

21
F O (B 110 = 2k + 1R [,k +1] ) — &k + 1] )
i=]

where P,(k+1|k)=P,(k+1]|k)+ Rk +1)

6. Finally the cross correlation matrix is determined by

Palk + 11 ) = ——{slxo(k + 11 k) = &(k + 1] k)] [Zo(k + 11 k) — 3k +1| )

n+K

2n
+%Z[x,(k + 1| k) =2k +1| k)] (Z,(k +1]k) —2(k + 1] RK)}
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Initial guesses P(0 | 0) relative to X(0]0)? in percentile

3. NUMERICAL SIMULATION

3.1 NUMERICAL SIMULATION FOR NONLINEAR SDOF SYSTEM
The governing equation of a nonlinear sing-degree-of-freedom system subjected to ground acceleration may be
represented by

U(t) + HU®),U(t)) = —iiy(t) )

where U,U,U are the horizontal displacement, velocity and acceleration vectors of the structure all relative to

the ground, 1i,(t) = the ground acceleration and H(U(t),U(t)) is the normalized nonlinear restoring force.
There are many kinds of nonlinear restoring force equations, for example nonparametric model with

polynomial function of the structural response, bilinear hysteretic model and hysteretic model proposed by Bouc

and Wen. In this study Bouc and Wen hysteretic model is used to compare performance between UKF and EKF.
The governing equations of Bouc and Wen’s model are as following

U(t) + 2p0U(t) + L2*¢(U(2),U(t)) = i, (10)
U, U()) = U) - B|UE)| + U @)U ()] (1

Equation (11) represents Bouc-Wen’s hysteretic restoring force model, which was first proposed by Bouc and
later generalized by Wen. In equation (11) the parameters [, -~ control the hysteretic shape and degree of
system degradation.

Numerical simulations are carried out for 13 by 13 cases of initial guesses of Z(0|0) and P(0 | 0). The
results are shown in Fig. 4 and Fig.5 in the sense of Root Mean Square Error (RMSE) of estimated parameters.
From the results the performance between the EKF and the UKF is strongly distinct. The EKF diverged almost
region of simulation but the UKF shows robust estimation capability about the initial guesses of. £(0 | 0) and
PO 0).

1.40 1.9 2.75 3.85 5.39 7.5¢
1.40 1.96 2.75 3.85 5.39 7.56 10.€ 14.8 20.8 29.1 40.8 57.1 80.0

.26 0.33 0.42 0.54 0.€9 0,88 1,13 1,45 1.86 2.38 3.05 3.90 5.0 0.26 0.33 0.42 0.54 0.69 0.88 1.13 1.45 1.86 2.38 3.05 3.90 5.0
Initial guess X(0]0) relative to Xive Initial guess X{0]0) relative t0 Xie

Fig.4 RMSE of the UKF for 1% noise Fig.5 RMSE of the EKF for 1% noise
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3.2 APPLICATION TO FIVE-STORY BUILDING STRUCTURE

Numerical simulations are carried out to show the capability of parameter identification using unscented Kalman
filter. Identification is performed for the five-degree-of-Freedom shear-building model with Bouc-Wen’s
hysteretic nonlinear spring model between base and 1* floor using the artificial response data with 1% noise in
RMS level. In this example, the parameters to be identified are c;, k,, 8 and v (i = 1,2,3,4,5). The exact
values of system parameters and estimated results are shown in Table 2 and convergence histories for linear and
nonlinear parameters are shown in Fig. 7.
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Table 2 The Exact Values for Simulations and Identified values

C K
Story
Ctme Cguess Cldcmiﬁed KIJ'ue Kguess Kidemiﬁed
1 0.2 0.1 0.20011 10 20 9.9949
2 0.2 0.1 0. 19826 10 30 10.004
3 0.2 0.1 0.20131 10 20 9.9957
4 0.2 0.1 0. 20015 10 30 10.005
5 0.2 0.1 0. 19839 10 20 9.9959
B
Story 4
ﬂ true /B guess ﬂ identified 7 true Y guess Y identified
1 0.1 0.0 0. 099911 0.2 0.0 0.20002
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4. CONCLUSION

In this study, the recently developed unscented Kalman Filter (UKF) as an alternative to the Extended Kalman
filter (EKF) has been applied to the identification of nonlinear structural dynamic systems. The results from a
series of numerical simulation studies are summarized below.

1. The UKF is superior to the EKF in terms of the expected error for non-linear systems, because it does
not require crude linearization in order to predict the new state of the system.

2. The UKF is more tractable, since the UKF avoids the derivation of Jacobian matrices for linearizing
nonlinear system dynamic equation and observation equation.

3. From the numerical simulation study on non-linear SDOF systems, the UKF shows robustness against
initial guesses of £(0 | 0) and P(0 | 0).

4. Numerical simulations for non-linear SDOF cases with Bouc-Wen’s hysteretic model show that the
UKF gives more accurate estimates for the parameters.

5. Numerical simulations for a five-story building structure with Bouc-Wen’s hysteretic model show good
estimation capability.

6. Several schemes employed to improve the performance of the EKF, such as adaptive fading algorithm
and weighted global iteration, appear to be also applicable to the UKF.
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