E_N^2 상의 비선형 퍼지 제어 시스템에 대한 완전 제어 가능성

The exact controllability for the nonlinear fuzzy control system in E_N^2 .

권영철, 강점란, *박종서

동아대학교 자연과학부. *진주교육대학교 수학교육

Young-Chel Kwun, Jum-Ran Kang, Jong-seo Park

Department of Mathematics, Dong-A University, Pusan, Korea

E-mail: yckwun@daunet.donga.ac.kr,

Department of Mathematics, Dong-A University, Pusan, Korea
*Dept. of Math. Education, Chinju National University of Education, Chinju
*E-mail: parkjs@ns.chinju-e.ac.kr

Abstract

This paper we study the exact controllability for the nonlinear fuzzy control system in E_N^2 by using the concept of fuzzy number of dimension 2 whose values are normal, convex, upper semicontinuous and compactly supported surface in R^2 .

keyword: fuzzy control system, fuzzy number of dimension 2, exact controllability,

I. Introduction

Many authors have studied several concepts of fuzzy systems. Kaleva ([3]) studied the existence and uniqueness of solution for the fuzzy differential equation on E^n where E^n is normal, convex, upper semicontinuous and compactly supported fuzzy sets in \mathbb{R}^n . Seikkala ([6]) proved the existence and uniqueness of fuzzy solution for the following equation:

$$\begin{cases} \dot{x}(t) = f(t, x(t)), \\ x(0) = x_0, \end{cases}$$

where f is a continuous mapping from

 $R^+ \times R \rightarrow R$ and x_0 is a fuzzy number in E^1 . Diamond and Kloeden ([1]) proved the fuzzy optimal control for the following system:

$$\dot{x}(t) = a(t)x(t) + u(t), \quad x(0) = x_0$$

where $x(\cdot)$, $u(\cdot)$ are nonempty compact interval-valued functions on E^1 .

Recently, Young-Chel Kwun, Jum-Ran Kang and Seon-Yu Kim ([5]) proved the existence of fuzzy optimal control for the nonlinear fuzzy differential system with nonlocal initial condition in E_N^1 using by Kuhn-Tucker theorems.

The purpose of this paper is to investigate

the exact controllability of the nonlinear fuzzy control system in E_N^2 . Let E_N^2 be the set of all fuzzy pyramidal numbers in R^2 with edges having rectangular bases parallel to the axis X and Y ([4]).

We consider the exact controllability for the following nonlinear fuzzy control system:

(F.C.S.)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)) + u(t), \\ x(0) = x_0, \end{cases}$$

where $a: [0, T] \rightarrow E_N$ is fuzzy coefficient, initial value $x_0 \in E_N^2$ and $f: [0, T] \times E_N^2 \rightarrow E_N^2$ is nonlinear function and $u(t) \in E_N^2$ is control function.

II. Properties of fuzzy numbers of dimension 2

We consider a fuzzy graph $G \subset R \times R$ that is a functional fuzzy relation in R^2 such that its membership function $\mu_G(x,y)$, $(x,y) \in R^2$, $\mu_G(x,y) \in [0,1]$, has the following properties:

- 1. $\forall x_0 \in R$, $\mu_C(x_0, y) \in [0, 1]$ is a convex membership function.
- 2. $\forall y_0 \in R$, $\mu_G(x, y_0) \in [0, 1]$, is a convex membership function.
- 3. $\forall \alpha \in [0,1]$, $\{(x,y) \in \mathbb{R}^2 : \mu_G(x,y) = \alpha\}$ is a convex surface.
- 4. $\exists (x_1, y_1) \in \mathbb{R}^2, \mu_G(x_1, y_1) = 1.$

If conditions are satisfied, the fuzzy subset $G \subseteq \mathbb{R}^2$ is called a fuzzy number of dimension 2. Let E_N^2 be the set of all fuzzy pyramidal numbers in \mathbb{R}^2 with edges having rectangular bases parallel to the axis X and Y.

We denote by fuzzy number of dimension 2 in \mathcal{E}_N^2

$$A = (a_1, a_2)$$

where a_1 , a_2 is projection of A to axis X and Y respectively. And a_1 and a_2 are fuzzy number in R.

The α -level set of fuzzy number of dimension 2 in E_N^2 defined by

[A]
$${}^{\alpha} = \{(x_1, x_2) \in R^2 : (x_1, x_2) \in [a_1]^{\alpha} \times [a_2]^{\alpha}\}$$

where operation \times is Cartesian product of the

Let $A, B \in E_N^2$, two fuzzy numbers of dimension 2 A and B are called equal A = B, if

$$A = B \Leftrightarrow [A]^{\alpha} = [B]^{\alpha}$$
 for all $\alpha \in (0, 1]$.

If $A, B \in E_N^2$ then for $\alpha \in (0, 1]$,

$$[A *_2 B]^{\alpha} = [a_1 *_1 b_1]^{\alpha} \times [a_2 *_1 b_2]^{\alpha},$$

where $*_2 = +_2, -_2, \cdot_2 \in E_N^2$

and
$$*_1 = +_1, -_1, \cdot_1 \in E_N^1$$

Let $[a_1]^{\alpha} \times [a_2]^{\alpha}$, $0 < \alpha \le 1$, be a given family of nonempty rectangle areas.

If

sets.

$$(2.1) [a_1]^{\beta} \times [a_2]^{\beta} \subset [a_1]^{\alpha} \times [a_2]^{\alpha} \quad \text{for } 0 < \alpha \le \beta$$
and

(2.2)
$$\lim_{k\to\infty} [a_1]^{a_1} \times \lim_{k\to\infty} [a_2]^{a_k} = [a_1]^{\alpha} \times [a_2]^{\alpha}$$

whenever (α_k) is nondecreasing sequence converging to $\alpha \in (0,1]$, then the family $[a_1]^\alpha \times [a_2]^\alpha$, $0 < \alpha \le 1$, represents the α -level sets of a fuzzy number of dimension $2A \in E_N^2$.

Conversely, if $[a_1]^{\alpha} \times [a_2]^{\alpha}$, $0 < \alpha \le 1$, are the α -level sets of a fuzzy number of dimension 2, then the conditions (2.1) and (2.2) holds true. We define the Hausdorff distance between subsets A and B of R^2 by

$$d_H(A, B) = \max\{d_H^*(A, B), d_H^*(B, A)\}.$$

The metric d_{∞} on E_N^2 is defined by $d_{\infty}(A,B) = \sup\{d_H([A]^{\alpha},[B]^{\alpha}): \alpha \in (0,1]\}$ for all $A,B \in E_N^2$.

III. The exact controllability

In this section, we show the exact controllability for the following nonlinear fuzzy control system:

(F.C.S.)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + f(t, x(t)) + u(t) \\ x(0) = x_0, \end{cases}$$

with fuzzy coefficient $a: [0,T] \to E_N$ initial [x(T)] value $x_0 \in E_N^2$ and control $u: [0,T] \to E_N^2$ and inhomogeneous term $f: [0,T] \times E_N^2 \to E_N^2$ satisfies a global Lipschitz condition, there exists a finite constant k > 0 such that $d_H([f(s,\xi_1(s))]^\alpha,[f(s,\xi_2(s))]^\alpha) \le kd_H([\xi_1(s)]^\alpha,[\xi_2(s)]^\alpha)$

$$d_{H}([f(s, \xi_{1}(s))]^{u}, [f(s, \xi_{2}(s))]^{u}) \leq kd_{H}([\xi_{1}(s)]^{u})$$
for all $\xi_{1}(s), \xi_{2}(s) \in E_{N}^{2}$

The (F.C.S.) is related to the following fuzzy integral system:

(F.I.S.)
$$\begin{cases} x(t) = S(t)x_0 + \int_0^t S(t-s)f(s, x(s)) ds \\ + \int_0^t S(t-s)u(s) ds \\ x(0) = x_0 \in E_N^2, \end{cases}$$

where S(t) is fuzzy number of dimension 2 and

$$[S(t)]^{\alpha} = [S_1(t)]^{\alpha} \times [S_2(t)]^{\alpha}$$

= $[S_1^{\alpha}(t), S_{1r}^{\alpha}(t)] \times [S_{2l}^{\alpha}(t), S_{2r}^{\alpha}(t)]$

where $S_{il}^{\alpha}(t)$ (i=1,2) is $\exp\{\int_0^t a_i^{\alpha}(s)ds\}$

and
$$S_{ir}^{\alpha}(t)$$
 $(i=1,2)$ is $\exp\{\int_{0}^{t} a_{r}^{\alpha}(s)ds\}$.

And $S_{i}^{\alpha}(t)$ (i=1,2, j=l,r) is continuous.

That is, there exists a constant c > 0 such that $|S_v^a(t)| \le c$ for all $t \in [0, T]$.

<u>Definition 3.1</u> The (F.I.S.) is exact controllable if, there exists u(t) such that the fuzzy solution x(t) of (F.I.S.) satisfies $x(T) = {}_{\alpha} x^1$ (i.e., $[x(T)]^a = [x_1(T)]^a \times [x_2(T)]^a = [(x^1)_1]^a \times [(x^1)_2]^a = [x^1]^a$) where x^1 is target set.

We assume that the following linear fuzzy control system with respect to nonlinear fuzzy control system (F.C.S.):

(F.C.S. 1)
$$\begin{cases} \dot{x}(t) = a(t)x(t) + u(t) \\ x(0) = x_0 \in E_N^2 \end{cases}$$

is exact controllable. Then

$$x(T) = S(T)x_0 + \int_0^T S(T-s)u(s)ds = {}_{\alpha}x^1$$

$$[x(T)]^{\alpha} = [S_{1l}^{\alpha}(T)(x_{1})_{0l}^{\alpha} + \int_{0}^{T} S_{1l}^{\alpha}(T-s) u_{1l}^{\alpha}(s) ds,$$

$$S_{1r}^{\alpha}(T)(x_{1})_{0r}^{\alpha} + \int_{0}^{T} S_{1r}^{\alpha}(T-s) u_{1r}^{\alpha}(s) ds]$$

$$\times [S_{2l}^{\alpha}(T)(x_{2})_{0l}^{\alpha} + \int_{0}^{T} S_{2l}^{\alpha}(T-s) u_{2l}^{\alpha}(s) ds,$$

$$S_{2r}^{\alpha}(T)(x_{2})_{0r}^{\alpha} + \int_{0}^{T} S_{2r}^{\alpha}(T-s) u_{2r}^{\alpha}(s) ds]$$

$$\vdots_{2}(s)]^{\alpha}) = [(x^{1})_{1l}^{\alpha}, (x^{1})_{1r}^{\alpha}] \times [(x^{1})_{2l}^{\alpha}, (x^{1})_{2r}^{\alpha}]$$

$$= [(x^{1})_{1}]^{\alpha} \times [(x^{1})_{2}]^{\alpha} = [x^{1}]^{\alpha}.$$

Defined the fuzzy mapping

$$\hat{g}$$
: $P(R^2) \rightarrow E_N^2$ by

$$\widetilde{g}^{\alpha}(v) = \begin{cases}
\int_{0}^{T} S^{\alpha}(T-s) v(s) ds, & v \subseteq \overline{\Gamma}_{u}, \\
0, & \text{otherwise.}
\end{cases}$$

Then there exists $\widetilde{g_i}$: $\widetilde{P}(R) \rightarrow E_N$ (i=1,2) such that

$$\widehat{g_i^a}(v_i) = \begin{cases} \int_0^T S_i^a(T-s) v_i(s) ds, & v_i(s) \subseteq \overline{\Gamma_{u_i}}, \\ 0, & \text{otherwise} \end{cases}$$

where u_i is projection of u to axis X and

Y respectively and there exists \hat{g} (j=l,r)

$$\tilde{g}_{il}^{a}(v_{il}) = \int_{0}^{T} S_{il}^{a}(T-s) v_{il}(s) ds,$$

$$v_{il}(s) \in [u_{il}^{a}(s), u_{i}^{1}(s)],$$

$$\widetilde{g}_{ir}^{\ a}(v_{ir}) = \int_{0}^{T} S_{ir}^{a}(T-s) v_{ir}(s) ds,$$

$$v_{ir}(s) \in [u^{1}(s), u^{a}_{ir}(s)].$$

We assume that \tilde{g}_{u}^{α} , \tilde{g}_{rr}^{α} are bijective mappings.

Hence α -level of u(s) are

$$[u(s)]^{\alpha} = [u_{1l}^{\alpha}(s), u_{1r}^{\alpha}(s)] \times [u_{2l}^{\alpha}(s), u_{2r}^{\alpha}(s)]$$

$$= [(\widehat{g_{1l}}^{\alpha})^{-1}((x^{1})_{1l}^{\alpha} - S_{1l}^{\alpha}(T)(x_{1})_{0l}^{\alpha}),$$

$$(\widehat{g}_{1r^{\beta}})^{-1}((x^{1})_{1r}^{\alpha} - S_{1r}^{\alpha}(T)(x_{1})_{0r}^{\alpha})]$$

$$\times [(\widehat{g}_{2r})^{-1}((x^{1})_{2l}^{\alpha} - S_{2l}^{\alpha}(T)(x_{2})_{0l}^{\alpha}),$$

$$(\widehat{g}_{2r})^{-1}((x^{1})_{2l}^{\alpha} - S_{2r}^{\alpha}(T)(x_{2})_{0l}^{\alpha})].$$

Thus we can be introduced u(s) of nonlinear system

$$[u(s)]^{a} = [u_{1l}^{a}(s), u_{1r}^{a}(s)] \times [u_{2l}^{a}(s), u_{2r}^{a}(s)]$$

$$= [(\tilde{g}_{3l}^{a})^{-1}((x^{1})_{1l}^{a} - S_{1l}^{a}(T)(x_{1})_{0l}^{a})$$

$$- \int_{0}^{T} S_{1l}^{a}(T-s) f_{1l}^{a}(s, x(s)) ds) ,$$

$$(\tilde{g}_{1r}^{a})^{-1}((x^{1})_{1r}^{a} - S_{1r}^{a}(T)(x_{1})_{0r}^{a})$$

$$- \int_{0}^{T} S_{1r}^{a}(T-s) f_{1r}^{a}(s, x(s)) ds)]$$

$$\times [(\tilde{g}_{2l}^{a})^{-1}((x^{1})_{2l}^{a} - S_{2l}^{a}(T)(x_{2})_{0l}^{a})$$

$$- \int_{0}^{T} S_{2l}^{a}(T-s) f_{2l}^{a}(s, x(s)) ds) ,$$

$$(\tilde{g}_{2r}^{a})^{-1}((x^{1})_{2r}^{a} - S_{2r}^{a}(T)(x_{2})_{0r}^{a})$$

$$- \int_{0}^{T} S_{2r}^{a}(T-s) f_{2r}^{a}(s, x(s)) ds)].$$

Then substituting this expression into the (F.I.S.) yields α -level of x(T).

We now set

$$\Phi x(t) =_{\alpha} S(t)x_0 + \int_0^t S(t-s)f(s, x(s)) ds
+ \int_0^t S(t-s) \ \hat{g}^{-1}(x^1 - S(T)x_0
- \int_0^T S(T-s)f(s, x(s)) ds)ds$$

where the fuzzy mappings \tilde{g}^{-1} satisfied above statements. Notice that $\Phi x(T) =_{\sigma} x^1$, which means that the control u(t) steers the (F.C.S.) from the origine to x^1 in time T provided we can obtain a fixed point of the nonlinear operator Φ .

Assume that the following hypotheses:

- (H1) (F.C.S. 1) is exact controllable.
- (H2) Inhomogeneous term $f: [0, T] \times E_N^2 \rightarrow E_N^2$ satisfies a global Lipschitz condition, there exists a finite constant k > 0 such that

$$d_{H}([f_{i}(s,x_{i}(s))]^{\alpha},[f_{i}(s,y_{i}(s))]^{\alpha})$$

$$\leq k d_H([x_i(s)]^{\alpha},[y_i(s)]^{\alpha})$$

for all $x_i(s)$, $y_i(s) \in E_N$ and

 $f_i:[0,T]\times E_N\to E_N$ (i=1,2) is projection of f. Theorem 3.1 Suppose that hypotheses (H1), (H2) are satisfied. Then the state of the (F.I.S.) can be steered from the initial value x_0 to any final state x^1 in time T. Proof. Omitted.

IV. Examples

Example 4.1

Consider the following fuzzy control system:

$$\begin{cases} \dot{x}(t) = a(t) x(t) + f(t, x(t)) + u(t), \\ x(0) = x_0 \end{cases}$$

where fuzzy coefficient a(t) = 2t and nonlinear term f(t, x(t)) is $(2tx(t)^2, 2tx(t)^2)$. And initial value x_0 is (0, 0). Target set is $x^1 = (2, 3)$.

The α -level set of fuzzy numbers are following it. $[0]^{\alpha} = [\alpha - 1, 1 - \alpha]$,

$$[\hat{2}]^{\alpha} = [\alpha + 1, 3 - \alpha], [\hat{3}]^{\alpha} = [\alpha + 2, 4 - \alpha].$$

The α -level of u(s) of nonlinear system are $u_1^{\alpha}(s) = \hat{g}_{11}^{-1}((\alpha+1) - S_1^{\alpha}(T)(\alpha-1)$

$$-\int_{1}^{T} S_{1}(T-s)s x_{1}(s)^{2} ds$$
),

$$u_{1r}^{\alpha}(s) = \tilde{g}_{1r}^{-1}((3-\alpha) - S_{1r}^{\alpha}(T)(1-\alpha) - \int_{0}^{T} S_{1r}(T-s)s \ x_{1r}(s)^{2} ds),$$

Then α -level of x(T) is

$$[x_1(T)]^{\alpha} = [\alpha + 1, 3 - \alpha] = [2]^{\alpha}$$

Hence $[x(T)]^{\alpha} = [2]^{\alpha} \times [3]^{\alpha} = [x^{1}]^{\alpha}$.

V. References

- [1] D. Dubois and H. Prade, Towards Fuzzy Differential Calculus Part 1: Integration of fuzzy mappings, Fuzzy Sets and Systems, 8, 1-17, (1982).
- [2] P. E. Kloeden, Fuzzy dynamical systems, Fuzzy Sets and Systems, 7, 275-296, (1982).
- [3] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24, 301-317, (1987).
- [4] A. Kaufmann and M. M. Gupta, Introduction to fuzzy arithmetic, Van Nostrand Reinhold, (1991).
- [5] Y. C. Kwun, J. R. Kang, S. Y. Kim, The existence of fuzzy optimal control for the nonlinear fuzzy differential system with nonlocal initial condition, Journal of Fuzzy Logic and Int. Systems, 10, No. 1, 6–11, (2000).

 [6] S. Seikkala, On the fuzzy initial value
- problem, Fuzzy Sets and Systems, 24, 319–330, (1987).