Application of reinforcement learning to hyper-redundant system
Acquisition of locomotion pattern of snake like robot

K. Itoand F. Matsuno

Graduate school of Interdisciplinary Science and Engineering, Tokyo Institute of Technology
4259 Nagatsuta, Midori, Yokohama, 226-8502 Japan
TEL 045-924-5546, FAX 045-924-5546
Email kazuyuki@cs.dis.titech.ac jp, Matsuno@dis.titech.ac jp

Abstract

We consider a hyper-redundant system that consists of
many uniform units. The hyper-redundant system has many
degrees of freedom and it can accomplish various tasks.
Applying the reinforcement learning to the hyper-redundant
system is very attractive because it is possible to acquire
various behaviors for various tasks automatically.

In this paper we present a new reinforcement learning
algorithm “Q-learning with propagation of motion”. The
algorithm is designed for the multi-agent systems that have
strong connections. The proposed algorithm needs only one
small Q-table even for a large scale system. So using the
proposed algorithm, it is possible for the hyper-redundant
system to learn the effective behavior. In this algorithm,
only one leader agent learns the own behavior using its
local information and the motion of the leader is
propagated to another agents with time delay. The
reward of the leader agent is given by using the whole
system information. And the effective behavior of the leader
is learned and the effective behavior of the system. is
acquired.

We apply the proposed algorithm to a snake-like
hvper-redundant robot. The necessary condition of the
system to be Markov decision process is discussed. And the
computer simulation of learning the locomotion s
demonstrated. From the simulation results we find that the
task of the locomotion of the robot to the desired point is
learned and the winding motion is acquired. We can
conclude that our proposed algorithm is effective to the
snake like hyper-redundant system and our analysis of the
condition, that the system is Markov decision process, is
valid.

Keywords:
Q-learning; hyper-redundant system; reinforcement
learning; snake-like robot; propagation of motion

1. Introduction

We consider a hyper-redundant system that consists of
many uniform units. The hyper-redundant system has many

65

degrees of freedom and it can accomplish various tasks.
Applying the reinforcement learning to the hyper-redundant
system is very attractive because it is possible to acquire
various behaviors automatically.

The reinforcement learning [3][4][5] has been much
attention for the control method of real robots [6][7]. It does
not need priori knowledge and has higher capability of
reactive and adaptive behaviors. In the reinforcement
learning, the designer has to prepare only one controller,
and the different control laws are acquired automatically for
each different task.

Q-learning [5] is regarded as one of the most typical
methods of the reinforcement learning. In the Markov
decision process, applying the Q-learning to the system, the
optimal behaviors are acquired. Actually the reinforcement
learning is applied to some simple tasks and their
effectiveness is demonstrated [3]-[9]. However increasing
of the action-state space makes it difficult to accomplish the
learning process. So applying the reinforcement leamning to
the hyper-redundant system is very difficult and in the most
of all previous works, the application of the learning is
restricted to simple tasks with relatively small action-state
space.

Considering these points we present a new reinforcement
learning algorithm “Q-learning with propagation of
motion”. The algorithm is designed for the multi-agent
systems that have strong connections. The proposed
algorithm needs only one small Q-table even for the large
scale system. So using the proposed algorithm, it is possible
for the hyper-redundant system to learn an effective
behavior. In the algorithm, only one leader agent learns the
own behavior using its local information and the movement
of the leader is propagated to another agents with time
delay. The reward of the leader agent is given using the
whole system information. And the effective behavior of
the leader is learned and the effective behavior of the
system is acquired.

In this paper we apply the proposed method to a
snake-like hyper-redundant robot. It is composed of units
that connect each other in series as the line form. The unit is
regard as an agent and each agent has physical interaction
each other. So we consider the snake-like robot as the
multi-agent systems that have strong connections.

In the relative works of the snake-like robot, Hirose
demonstrated the locomotion of snake-like robots based on
the analysis of the locomotion of real snakes [1]. Iwasaki
proposed the control law of locomotion of a snake-like
robot based on precise physical model [2]. However these
ways of locomotion are implemented by designer, and the
snake robot can not adapt to a given environment
automatically. In the methodology of controller design, the
designer has to construct the different control laws for each
different task so the load of work of the designer is very
large. So the adaptive methodology that the control law is
acquired automatically should be necessary.

To demonstrate the effectiveness of our proposed
approach, the computer simulations of learning the
locomotion of the robot to the desired position are carried
out. And the necessary condition for the system to be the
Markov decision process is discussed.

2. Hyper-redundant systems and snake-like
robot

Active joint

Fig. | Basic unit

2o, T
2

(a) Snake like form
ot a oﬁ

(b) 4 legs form

oL

Fig. 2 Hyper-redundant mechanical systems

Fig. 1 shows a unit of a hyper-redundant mechanical system.

The unit has one active joint and it can combine another
units. A hyper-redundant system is composed of many
uniform units and separation and recombination are
possible (as shown in Fig. 2). By changing the form of
combination, the hyper-redundant system can adapt itself to
various environment and various tasks that are imposed.

_66-

The hyper-redundant mechanical system is regarded as the
adaptive hardware system, and the reinforcement learning
is regarded as an adaptive software system. By combining
these adaptive hardware system and software system, real
adaptive system can be constructed. So the applying the
reinforcement learning to the hyper-redundant system is
very atlractive and it might be effective.

The snake-like robot is one of the typical and simple
forms of the hyper-redundant systems. It is composed of
units that connect each other in series as the line form. The
snake-like robot has many degrees of freedom and various
movements are possible.

In this paper we consider one unit of the snake-like robot
as the one agent. And each agent can control own joint
locally.

3. Q-learning

Reinforcement learning is the method of acquisition of
policy. In the unknown world, by repeating try and error,
the agent learns the effective policy using information of
reward only.

Q-learning is a reinforcement learning algorithm proposed
by Watkins [1]. In the Q-learning, we assume that the world
constitutes a Markov decision process. The agent has the
Q-value that is composed of the pair of states s and actions
a. By repeating the trial, the Q-vale is renewed using
following rule.

Q(s,a) < (1-a)Q(s,a)

+a(r(s,a)+y max Q(s’,a’)) M

where @ is a learning rate (0 <a <1), and y is a

discount rate (0 <y <1).

By the infinite iteration of trials, the optimal policy is
acquired and it can run along the optimal trajectories by
selecting the action of maximum Q-value at each time.

4. Problem of Q-learning for applying to
hyper-redundant system

The hyper-redundant system has many degrees of
freedom. Generally, the size of a state-action space is
expressed as an exponential function of degrees of freedom.
So the size of the state-action space of the hyper-redundant
system is very large. In the Q-learning (not only Q-learning
but also another various reinforcement learning algorithm
has same problem) Q-vales is composed of all state-action
space, so if the state-action space is large then
implementation of Q-leaming is impossible. And suppose
the implementation is possible, the learning time is also
exponential function of the number of degrees of freedom
and the acquisition of the task is impossible.

To reduce the size of the state-space, suppose Q-value is
compesed of a sub-set of the state-space, then generally
another problem occurs. This problem is caused by partial
observation. Because of the partial observation, the

different states are observed as the same state. In this case
even if the world constitutes a Markov decision process, the
world can be observed non-Markov decision process. And
it causes the obstruction for achieving the learing.

Some reinforcement learning algorithms for solving the
partially observable Markov decision problem are proposed
[81[9], but their application has been limited to a simple
problem because they need a larger memory space or they
use a probabilistic method. And it is difficult to apply them
to the hyper-redundant system.

S. Proposed method

5.1 Propagation of motion

A leader agent learns own behavior using its local
information only. And the motion of the leader agent is
propagated to other agents with time delay. The reward of
the leader agent is given using information from the whole
system. In this sub-section we describe the formulation of
propagation of motion and the details of the method of the
composition of the state-action space are explained in the
next sub-section.

The motion of the leader agent is learned using Q-learning
and the motion of it propagates the next agent, and similarly
the motion propagates toward the end agent.

We consider the snake-like hyper-redundant robot that
consists of N units. It means that the number of joints is N
and the number of links is N +1. In this case the head unit
of the snake-like robot can be regarded as the leader agent.
We assume that all joint angles are controlled locally and
they are regulated to desired angles within each time step.

6,()=6,) (2)

In (2) 6,(t;) is the relative joint angle of the n-th
(2<n<N) joint at time #, and 6,,(z,) is the desired

value of 8 (¢,).
The desired relative joint angle of Joint 1 (head joint) at
time ¢, is given as

9111 (ti+1) :‘91 (ti)+A8] (ti) 3)
where AH,(t,.)iS the deviation of the joint angle of Joint 1

and it is the action of Q-learning. The deviation of the joint
angle of the n-th joint is given as

A011 (tl) = A011—1 (ti—l) (4)

and the desired relative joint angle of the n-th joint is given
as

gnd (ti+]) = 9/1 (t:) + Agn (tx) : (5)

From (3)-(5), the motion of Joint 1 propagates to the latter

67

joints.
5. 2 Composition of state-action space

We construct the state-action space using head unit
information only. So the size of the state-action space is
reduced compared to the case when the whole information
is used. The action is the deviation of the joint angle of

Joint 1 A@, (¢;). The state is composed of the top position
of the head, the absolute angle of the head link, the relative
joint angle of Joint 1 @,(¢,) and the actions that are used

from p steps past to 1 step past { A6, (¢, ,),L. ,AH, ()}
Using this composition method, the state-action space is
composed of the head unit information only and the states
of other units and actions are determined automatically.
In the next sub-section we consider the condition so that
the world can be observed as the Markov decision process.

5.3 Condition to be Markov decision process

In the previous sub-section we construct the state-action
space using only head unit (which is the representative part
of robot) information. In general, under the composition,
different shapes of robot can be observed as the same state
and it causes the partial observable problem. And the
propagation of motion causes the destruction of Markov
property, because the robot motion depends on the actions
that were used from N-1 steps past to 1 step past. In this
section we consider the condition for the system to be
complete observable Markov decision process.

At first we consider the partial observable problem. From
(2)-(5), the n-th joint angle at time #; can be written as (6).

Hn ()= en () _61 (%)
i-1 6)

+0, ()~ D, AG()

J=i=(n-1)

From equation (6), the n-th joint angle at time ¢ can be
expressed by using the initial joint angle of the n-th joint,
initial joint angle of the head joint, the joint angle of the
head joint at time ¢, and the actions which are used from
n-1 steps past to 1 step past. And we do not need any other

joint angles to calculate @, (¢,). It is very important. Now,

suppose the initial shape is fixed and p > n —1, the joint

angle of the #-th joint can be determined uniquely by using
the head unit information only. The maximum value of » is
N, so the condition not to occur the partial observable
problem is “Initial shape is fixed and p > N —1”. Under
the condition, all joint angles can be observed completely in
the composed state space using our proposed method. So
the partial observable problem does not occur.

Next we consider Markov property. Because of
propagation of motion, the actions that were used at from
N-1 steps past to 1 step past is remained in the dynamics
(3)-(5). By adding the past actions to the state, the past
actions that remain in the dynamics are recognized as the
different states. The maximum number of steps of actions
that remain in the system is N-1. So, to satisfy Markov

property, we should set p to satisfy p> N 1.

Summarizing this section, we obtain that the condition for
the system to be the complete observable Markov decision
process is “Initial shape is fixed and p is set so as to satisfy
the inequality p> N -1".

5.4 Size of state-action space

In this sub-section, we compare the original size of the
state-action space with that of our proposed method.

Let N,, be the number of region of the absolute position
state (for example, position of the head and absolute
attitude angle of the head link), V,, be the number of region
of the action for one joint, N, be the number of region of
the state for one joint. In general, we design N,,and N, to
satisfy the following inequality.

N, =N, @)
If the inequality (7) is not satisfied, the different states that
are transited using different actions may be recognized as
the same state.

The original size of the state space S, is given as
equation (8) and the original size of the action space S, is
given as equation (9).

®)
€))

N
Sos = Nrp X(Nrs)
N
SD(I = (Nrﬂ)
The size of the state space of our proposed method S, is

given as equation (10) and the size of the action space of
proposed method S,,, is given as equation (11).

S,=N_,xN_x (N,)N
S/m :Nm

(10)
(1)

From (8) and (10), we can find that the dimension of
original state space and proposed state space are equal, but

using the inequality (7) we find that § <.§_ is satisfied

for all V.

From (11), we can find that the S, is constant and is
independent on the number of links N. And form (9) and
(11) when N=1, S,, and §,,, are equal, but when N>1, the

relation S ot < S, is satisfied. And the number of links

becomes lager our proposed method becomes superior.

We can conclude that the size of the state space and the
action space can be reduced by using our proposed method.
Especially the size of the action space is a constant that is
independent on the number of links, so our proposed
method is effective. In this paper we consider the snake-like
robot as a typical example of the hyper-redundant systems.
Using similar procedure we would obtain the similar
conditions, for locomotion pattern generation of a
multi-legged rtobot, the decision making strategy for
multiple mobile robots, and so on.

68

6. Simulation

In this section, we implement the proposed method and
show the acquired locomotion for a 10-links snake-like
robot.

y

A

/
/

{ Head of Robot

X

»

Initial state

Fig. 3 Task of simulation

Large friction

Small friction

Snake like robc->t

Fig. 4 Robot model for simulation
6.1 Task

In this paper we consider the task of locomotion to the
desired position of a 10-links (9-units) snake-like robot. Let
us define the coordinate as depicted in Fig. 3. The initial
position of the head unit is (0,0) and the initial shape is a
straight shape on the x-axis as depicted in Fig. 3. The
desired position is set as (— 3, 3). And the aim of task is
acquiring the locomotion pattern and moving the head of
the robot to the desired position.

6. 2 Robot model for simulation

In this simulation we employ the snake like robot model
with friction proposed by Yamauchi et al. [2]. In this model,
the friction between links and the ground is assumed as
depicted in Fig. 4. All links touch the ground and the
friction of the vertical direction with respect to the robot

body is larger than that of the tangential direction. Owing
to this difference of friction the snake-like robot can move.

6. 3 Implementation of proposed method

At first we describe the composition of the state-action

space. We set the action A6, as two values: {— 5[deg],
+5[deg}}. And time step is set as 0.5[s]. The state is
composed of the distance from the head unit to the goal, the
direction of the goal from the head unit, the relative angle
of head joint as depicted in Fig. 5 and the past actions.

The distance is divided into 6 regions: from O[m] to
2.5[m] every 0.5[m] and else. The direction of goal position
is divided into 10 regions: from —90[deg] to +90[deg] every
20[deg] and else. The relative angle of head joint is divided
into 6 regions: from —25[deg] to +25[deg] every 10[{deg]
and else. To satisfy the condition that is discussed in the
section 5.3, we set p as 8 and the state of the past actions is
composed of 8 actions which was used from 1 step past to 8
steps past.

Direction of goal
/ Head of robot
~/ Relative joint angle 6,(,)

R ITTTYS

Snake like Robot

Distance to goal

Fig. 5 State space

Next we describe the reward and penalty. When the
distance from the goal to the head unit became less than
0.5[m], the reward 100 is given. And when the direction of
the goal from the head exceeded the region from —90[deg]
to +90[deg], the penalty —50 is given.

We assume that the movable region of each joint is from
~25[deg] to +25{deg], and when a joint exceeds the
movable limit, the penalty -50 is given.

When the reward or penalty is given, the robot is reset to
the initial position and the next trial is restarted.

Next we describe the implementation of Q-leaming. In
this simulation we employ simple Q-learning as shown in
(1) and to select an action, we employ the Boltzmann
distribution

Plalx) = exp(@(x,a)/T) (12)

D exp(Q(x,b)/T)

heactions

The other parameters are set as follows. The learning rate
a is 0.5, the discount rate ¥ is 0.9, and the 7 in the
Boltzmann distribution (12) is 1.

-69-

6. 4 Simulation results

Fig. 6 shows the learning history and Fig. 7 shows the
acquired locomotion. In Fig. 6, the number of success
increases as learning progresses and at the 20000th trial the
learning is completed. The reason why the number of
success can not converge to 50 (total number of trials) is
that we employ the probabilistic method (12) to select the
action. In Fig. 7, we can find that the winding motion is
acquired and the head unit reaches the goal.

50

num ber of success per 50 trak
- - n » ™ @ a F
= = S @ S & =1 o

o

No.1 No.2
3 v 3
i
2 | 2 ;
i 1 ;
& . & g '
0 COCEENERD 0 Rysy? |
a0 -1
_ -2
?'3 -2 - [} 1 2 -3 -2 -1 0 1 2
]]
No.3 No. 4
3 3— —)
2 2 |
(),)\ i
1 “sz%% 1 W Jt
—_ 3 - 5
& & ‘t%) 1
0 S Q I
0
4 -1
-2 2%

3 2 a4 o0 1 2
m] m]
No.5 No.6
3 -—‘, 3— — —
|
2 FAEN i
P T ‘ | ﬁ“&x 1
iH “Z\k\(1 R I
' ;
| 1 i 1'
-1 l - i
i
. b ‘
R e T S
] Il
No.7
3o -
2 ""\\\\ :
1}) i
& |
0: i
' !
-1 L
]
ENE

Fig. 7 Acquired locomotion

In the early trials, the robot body could not move
efficiently. As the trails are repeated, the winding motion
has been acquired and the task has been accomplished.
Surely, the “propagation of motion” influences the
locomotion, but the winding motion is not owing to the
“propagation of motion” directly, the winding motion is
acquired as a result of learning for the robot with the nature
of “propagation of motion”.

7. Conclusion

In this paper, we have discussed the effectiveness and the
problems in applying the reinforcement leaming to the
hyper-redundant systems. We proposed “Q-learning with
propagation” and applied it to the snake-like
hyper-redundant robot. The condition that the system is the
complete Markov decision process under the proposed
algorithm was shown. The simulation of acquiring the
locomotion of the snake-like robot was carried out. And the
winding motion was acquired and the task that is moving
the head of robot to the desired position was accomplished.
We can conclude that our proposed algorithm is effective to
the snake-like hyper-redundant robot system and our
analysis of the condition, that the system is the Markov
decision process, is valid.

Our proposed method is applicable to the multi-agent
systems with the strong connections. To demonstrate the
various applicability of the method we would consider the
locomotion pattern generation for the multi-legged robots
and the decision making strategy for multiple mobile robots
and other examples.

Acknowledgment

This research is supported by The Grant-in Aid for COE
Research Project of Super Mechano-Systems by The
Ministry of Education, Science, Sport and Culture of Japan.

Reference

[1] S. Hirose, “Biologically Inspired Robots (Snake like
Locomotion and Manipulator)”, Oxford University Press,
1993

[2] H. Yamauchi, M. Fukaya, M. Saito, T. Iwasaki,
“Locomotion Analysis of Hyper Redundant Systems”,
Proc. of 28th SICE Symposium on Control Theory, pp.
171-174, 1999 (in Japanese)

[3] R. S. Sutton, A. G. Barto, “Reinforcement Learning: An
Introduction”, A Bradford Book, The MIT Press, 1998
[4] R. S. Sutton, “Learning to predict by the Methods of
Temporal Differences”, Machine Learning 3, pp. 9-44,

1988

[5] C. J. C. H. Watkins, P. Dayan, “Technical note
Q-Learning,” Machine Leaming, Vol. 8, pp 279-292,
1992

[6] M. Svinin, S. Ushio, K. Yamada, K. Ueda, “Emergent
systems of motion patterns for locomotion robots”, Proc.
Int. Workshop on Emergent Sunthesis, pp. 119-126, 1999

70

[7] S. Ushio, M. Svinin, K. Ueda, and S. Hosoe, “An
Evclutionary Approach to Decentralized Reinforcement
Learning for Walking Robots”, Proc. of the 6th Int. Symp
on Artificial life and Robotics, pp. 176-179, 2001

[8] T. Jakkola, S. P. Singh, M. 1. Jordan, “Reinforcement
Leaming Algorithm for Partially Observable Markov
Decision Problems”, Advances of Neural Information
Processing Systems 7, pp. 345-352, 1994,

[51 S. P. Singh, T. Jakkola, M. L. Jordan, “Learning Without
State-Estimation in Partially Observable Markov
Decision Problems”, Proceedings of the 11th

International Conference on Machine Learning, pp.
284-292, 1994,

