Generating Chaos from Discrete TS Fuzzy Systems
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Abstract

In this paper, a simple and systematic control design
method is proposed for a discrete-time Takagi-Sugeno (TS)
fuzzy system, which employs the parallel distributed
compensation (PDC) to determine the structure of a fuzzy
controller so as to make all the Lyapunov exponents of the
controlled TS fuzzy system strictly positive. This approach
is proven to be mathematically rigorous for anticontrol of
chaos for a TS fuzzy system, in the sense that any given
discrete-time TS fuzzy system can be made chaotic by the
designed PDC controller along with the mod-operation. A
numerical example is included to visualize the anticontrol

effect.
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Introduction

Today, it is well known that most conventional control
methods and many special techniques can be used for chaos
control [1], for which no ‘matter the purpose is to reduce
“bad” chaos or to introduce “good” chaos, numerous
control methodologies have been proposed, developed,
tested, and applied. Similar to conventional systems control,
the concept of “controlling chaos” is first to mean ordering
or suppressing chaos in the sense of stabilizing chaotic
system responses. In this pursuit, numerical and
experimental simulations have convincingly demonstrated
that chaotic systems respond well to these control strategies.
These methods of ordering chaos include the now-familiar
OGY method [2,3], feedback controls [4,5], and fuzzy
_control [6-8], etc., to name just a few.

However, controlling chaos has also encompassed many
nontraditional tasks, particularly those of enmhancing or
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generating chaos when it is beneficial. The process of chaos
control is now understood as a transition between chaos
and order, and sometimes from order to chaos, depending
on the application of interest. The task of purposely
creating chaos, sometimes called chaotification or
anticontrol of chaos, has attracted increasing attention in
recent years due to its great potential in nontraditional
applications such as those found within the context of
physical, chemical, mechanical, electrical, optical, and
particularly biological and medical systems [9-11].
Recently, there have been some successful reports on
anticontrolling chaos [10-12]. Although these reports are
essentially experimental or semi-analytical, in the sense
that no explicit and quantitative computational formulas are
provided with rigorous mathematical justification, they are
nevertheless interesting and promising. Two simple yet
mathematically rigorous control methods from the
engineering feedback control approach were developed
[11-13], where a positive state-feedback controller with an
uniformly bounded control-gain sequence can be designed
to make all Lyapunov exponents of the controlled system
strictly positive, or arbitrarily assigned (with any positive,
zero and negative arrangements). Moreover, such a
controller can be designed for an arbitrarily given,
n-dimensional dynamical system that could be originally
nonchaotic or even asymptotically stable.

The possible interactions between fuzzy logic and chaos
theory have been explored since the 1990s. The
explorations have been carried mainly on fuzzy modeling
of chaotic systems using the Takagi-Sugeno (TS) model
[6-8,16], linguistic descriptions [17] and fuzzy control of
chaos via an LMI-based fuzzy control system design [7,8].
In these investigations, to design a fuzzy controller chaotic
systems are represented by TS fuzzy models, and then the
LMI-based design problems are defined and employed to
find feedback gains of the fuzzy controllers that can satisfy
some specifications such as stability, decay rate, and
constraints on the control input and output of the overall
fuzzy control systems.



In this paper, the problem of anticontrolling chaos in TS
fuzzy systems is studied. The goal is to make nonchaotic or
even stable TS fuzzy systems chaotic. The concept of PDC
is utilized to design a fuzzy controller which can make all
the Lyapunov exponents strictly positive, for any given
n-dimensional discrete-time TS fuzzy system that could be
originally nonchaotic or even asymptotically stable.
Actually, these Lyapunov exponents can also be rearranged
by the PDC in such a way that one has any desired
(positive, zero, and/or negative) Lyapunov exponents in an
arbitrary order.

Chaotic TS Fuzzy Model

The TS fuzzy model[7,8,16] is captured by a set of fuzzy
implications, which characterize local relations of the
system in the state space. The main feature of a TS model
is to express the local dynamics of each fuzzy implication
(rule) by a linear state-space system model. The overall
fuzzy system is then modeled by fuzzy “blending” of these
local linear system models.

Specifically, a general TS fuzzy system is described as
follows:

Rule i: IF x,(k) is M, ...and x,(k)is M,
THEN X(k+l)=A,.X(k)+Biu(k), (D
where

x" (k) =[x, (k),x, (k),A x, k)],

u’ (k) =, (k) u, (k). A w,, (K)],
I =1,2,A ,r, in which 7 is the number of IF-THEN

rules, M ; are fuzzy sets, and the equation

x(k+1)= A x(k)+ B, u(k) is the output
from the ith IF-THEN rule.

Assume that A, and B,,i=12,A ,r, are uniformly
bounded; that is, there are constants N and O such that
sup|A,|< N <o and sup|B,|< Q<o

1sisr \sisr
with
det(B,)=n >0 forall i=1,..,r,

where ” . ” denote the spectral norm of a

finite-dimensional matrix, that is, the largest singular value
of the matrix.

Now, given a pair of (X(k),u(k)), the final output of the
fuzzy system is inferred as follows:

S w, (k) (A, X(6) + Bu(k)}
x(k+1) =+ , )
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W) = M, (x, (),

M ;(x;(k))is the degree of membership of x,(k) in
M > With

D> wi(k)>0

)

w;(k) 20,
By introducing A, (k)(= w, (k) / Z;l w,(k)) instead of

w,(k), (2) is rewritten as

x(k+1) = Y B (DA X0 + Bu)} ®

i=1

i=L2,Ar

Note that
> h(ky=1
i=1
h.(k)>0,

in which %,(k) can be regarded as the normalized weight
of the [F-THEN rules. '

,I=12,Ar 4

Definition 1 (Chaotic TS fuzzy model): TS fuzzy model (3)
is said to be chaotic in the sense of Li and Yorke if it has a
snap-back repeller. Thus, it can be called a chaotic TS fuzzy
model.

Anticontrol of Chaos via PDC

The parallel-distributed compensation (PDC) is employed
here to determine a structure of a fuzzy controller from a
given TS fuzzy model. Each control rule is constructed
from the corresponding rule of the TS fuzzy model in the
PDC. The designed fuzzy controller shares the same fuzzy
sets with the fuzzy model in the premise parts. The PDC
provides the following fuzzy control rule structure from the
fuzzy model (1):

Control Rule i:

IF x,(k) is M, ..and x,(k)is M,,,

Then u(k)=-F.x(k), i=12A r. (5)
The fuzzy control rules have linear state feedback laws in
the consequent parts. The overall fuzzy controller is
represented by

3w (R X(R)
w() = - =3 BB XE). ©
Z w; (k) =

To be practical, the control-gain matrices {F,. };[ should
be uniformly bounded:

sup|F,| s M <o M

I<igr




for some constant M .
By substituting (6) into (3), we obtain

x(k) = 33 b (k)h, (DA, -B.F, (k). ®
i=l j=i
System (8) can be ,also written as

x(k +1)

= ih,. (k) (k){A, - B,F, jx(k)

i=1

+ 22 h,(k)h, (k) {Ai 5 }; {Aj - BjFi}x(k)
= 3 (), ()G x(K)
+23" h, (), (k){(i;i’}x(k)
| ©)

where G, = A, —BI.FJ. forall i,j=1,..,r.
We choose B, =B,i=12,A ,r, so that (9) can be
rewritten as:
x(k+1) = Z h,(k){A, — BF, x(k)
- (10)
= (k)G ;x(k)
i=l

Theorem 1[/8]: The TS fuzzy system (3) is exactly
linearizable via the PDC fuzzy controller (5) if there exists

feedback gains F; such that
{(A, -BF,)— (A, -BF))} x
{(A, -BF,)— (A, -BF,)}=0

for i =2,3,A ,r . The overall control system is linearized
as

1n

x(k +1) = Gx(k) (12)

where G =G, i=23,..,r.

i >
It is well known that the jth Lyapunov exponent of the orbit

{X f }::o of the controlled system (12), starting from the

given X, , is defined by

o1 x .
/1‘,.=}1_r)2}€—1nluj(G Y, j=L2,An, (13

where 41, (G*) is the jth singular value of matrix G".

In the controlled system (12), we want to design the

constant matrices {Fi }:=| , given in (6), such that the
Lyapunov exponents of the controlled system orbit

{X r }:;0 can be arbitrarily assigned:

A(x)=0;, j=L2,A ,n, (14)
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where {O'j }L

may be positive, zero, or negative (but all finite).
A convenient choice is, simply,

G-= diag{e"' e K e’ }
It is clear that the eigenvalues of G are all larger than 1 if

o;>0,j=12A ,n.

are arbitrarily chosen by the user, which

Matrices F,,7=1,2,A ,r, can then be obtained and they
are uniformly bounded.

Theorem 2: The resulting overall controlled system (12),
along with the mod-operation:

x(k +1) = Gx(k)

where G = diag{ec" ,e”? K e’

(mod-1) (15)
and o, >0 ,
i =1,2,A ,n,is chaotic in the sense of Li and Yorke.

A Simulation Example

Consider a nonchaotic discrete-time TS fuzzy model given
as follows:

Rule I: TF x(¢) is M,,
(x(t+1)] x(t

THEN ( ) =A, ® + Bu

| y(E+1) ]

Rule 2: IF x(t) is Mz»

e A{x(t)} +Bu
| y(¢+1)

d 0.3 ~-d 03
A= , A, = ,
1 0 1 0

x(t) € [-d,d] and d > 0, with membership functions

M=3(1-22) -3{1+29)

where

2 d 2 d

Without control (i.e., W =0), the system is stable as
shown in Figure 1.
Using two desired Lyapunov exponents,

o, =In(1.9) = 0.6418539, and
o, =1n(2.0) = 0.6931472,

1 0
For the sake of simplicity, we assume that B = I:O 11]

and d =2 . We completed the design of the feedback
controller by following the procedure described above. We
obtained the controlled system output as shown in Figure
2—Figure 4. The output trajectory is displayed in the
xr
are obviously equivalent to mod-1 operations for

—X,,; phase plane after some mod-2 operations (they



anticontrol), which has the above-indicated Lyapunov
exponents A, =0, and A, =0,,.
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Fig.1-The system orbit without control

¥ty

1200

Fig.3-The phase portrait of ¢ — x()
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Fig.4-The phase portrait of ¢ — y(f)
Conclusions

A simple, yet mathematically precise and rigorous PDC
control design procedure has been derived in this paper,
which can rearrange all the Lyapunov exponents of the
controlled system according to the user’s desire, namely, to
make them positive, zero, and/or negative. in an arbitrary
order, for any given n-dimensional discrete-time TS fuzzy
system that could be originally nonchaotic or even
asymptotically stable.

As is known, many chaotic systems, such as Lorenz and
Henon systems, can be represented by TS fuzzy models.
Therefore, they can be controlled by using LMI-based
fuzzy control system design. Using this proposed PDC
control design approach, one can make nonchaotic or even
asymprotically stable TS fuzzy systems chaotic, which
provides a means to further explore the interaction between
fuzzy control and chaos theory, which has great potential in
future engineering applications of chaos. To our knowledge,
there does not seem to be much research done on
generating chaos via fuzzy control systems prior to this
work.
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