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Abstract

A Controlled Ecological Life Support System (CELSS) is
essential for man to live for a long time in a closed space
such as a lunar base or a Mars base. Such a system may be
an extremely complex system that has a lot of facilities and
circulates multiple substances. Therefore, it is a very
difficult task to control the whole CELSS. Thus by
regarding facilities constituting the CELSS as agents and
regarding the status and action as information, the whole
CELSS can be treated as a multi-agent system (MAS). If a
CELSS can be regarded as MAS, the CELSS can have three
advantages with the MAS. First, the MAS need not have a
central computer. Second, the expendability of the CELSS
increases. Third, its fault tolerance rises. However, it is
difficult to describe the cooperation protocol among agents
for MAS. Therefore in this study, we propose to apply
reinforcement learning (RL), because RL enables an agent
to acquire a control rule automatically. To prove that MAS
and RL are effective methods, we have created the system in
Java, which easily gives a distributed environment that is
the characteristic feature of an agent. In this paper, we
report the simulation results for material circulation

control of the CELSS by the MAS and RL.
Keywords:

CELSS, multi-agent system, reinforcement learning,
cooperation protocol
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Purposes and Background

A Controlled Ecological Life Support System (CELSS)
allows man to live for a long time in a closed space such as
a lunar base or a Martian base [1]. The CELSS is an
extremely complex system that provides a lot of facilities
and circulates multiple substances [2]. Therefore
controlling operation over the whole CELSS is quite a hard
task. As methods to solve the task, applications of Fuzzy
[31{4], AI [5], and Intelligent Automated Control [6] have
been proposed. However, these methods have the necessity
for clearly describing the control law of the entire system or
among facilities. This means all facilities must be operated
by the commands from the master computer. Therefore,
when new facility is added to the system, it must be
necessary to reconstruct the entire control law, because of
dependence of each facility. Moreover, to get ready for
sudden malfunction of the system, it must be necessary to
define the control law in the full pattern that can be
supposed. Consequently, there is a problem to need very
complex software.

On the contrary, we propose an operation management
method of the CELSS as follows.

(a) Regarding each facility as an agent, and its state and
condition as information.

(b) Each agent distributed solves problems through the
cooperation among other agents.
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(c) As the result, the optimum material circulation status is
maintained in the whole system.

There is a multi-agent system (MAS) as a technique that
treats multiple agents. The MAS has the following three
advantages.

(1) Each agent controls material circulation cooperating
with surrounding agents. Therefore, no control law for the
entire system needs to be described. Also, no central control
computer needs to be existed.

(2) Each agent is independent, so that the extension and
composition change of system can be made easily by an
addition/change of agents. Moreover, no system shutdown
is necessary, thus excellent extendibility and flexibility is
ensured.

(3) Even if fault occurs to a facility, the remaining facilities
(agents) can shift to a reduced operation autonomously,
because control laws only may be described among
facilities mutually connected. In fact, the system can be
reconstructed autonomously. As the result, the fault
tolerance of the system can rise.

On the other hand, realizing cooperation protocol is a key
issue in the MAS technique. Furthermore, in order to let an
agent perform an autonomous action, a mechanism to adapt
itself to an inexperienced environment should be
established. Hence we have aimed at that an agent itself can
acquire a cooperation protocol by learning, by applying the
reinforcement learning theory [7].

In a large-scale system like CELSS, it is possible to
describe the control law of each facility. However, since it
is difficult to describe the control law of whole material
circulation, it is thought very effective to make each facility
acquire a control law autonomously by learning.
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Fig.2 Model of Human and Vegetable (Plant)

Modeling

As a model of CELSS, Closed Ecology Experiment
Facilities (CEEF) of Institute for Environmental Sciences in
Japan was referred. As a research stage of a MAS
application, only the circulation of Oz, COz, and H20 were
considered for simplification. The circulation of N2,

-147-

ammonia (NH3), and ammonium nitrate (NH4NO3) is not
included in the model (the solid line portion of Fig.1 is
included in the model while the dotted line portion is not).
In addition, the plant growth model and human activity
model were based on literature [2].

Reinforcement Learning Theory

Outline

The MAS has three advantages, stated in section 1. On the
other hand, to control the whole CELSS as MAS,
cooperation protocol must be built into MAS. As a
technique to let agents themselves acquire the cooperation
protocol, we have introduced reinforcement learning (RL).
RL enables agents to advance learning with evaluation
(reward) as a result of actions, without a correct output
(teaching signal) that is essential for the neural network. It
must be effective to introduce RL into the problem that the
control law cannot be described in advance.

For this problem, Q Learning, the most famous among RL
theories, is applied. Q Learning estimates weight to the set
of states and actions, that is a rule. This weight is referred
to as Q value. A rule is defined as the combination of a
sensible state x and a selectable action a by an agent, then
the Q value is described as Q(x,a). Q value will be updated
by eq.(1), when an agent in the state xr selects an action at
in time ¢, and as a result, the state is changed to x++/ and
reward 7« is obtained.

Qt+] (xt’at) =
(1 - a)Qt (xl’al) + a(r, + 7I?§XQz(xt+l sy ))a (1)

where @ represents the leamning rate and 0 <@ <1
7 denotes the discount rate and a« is the action which gives
maximum Q value at the state xr+/.

The first term of the right side in eq.(1) represents the value
obtained by the previous leamning experience. The second
term expresses present learning result (reward). The third
term implies the optimal action in the future.

Therefore, it is assumed that a better action has higher Q
value, while a worse action has lower Q, in a group of
actions selectable at a certain state.

Definition of State, Action, and Reward

The definition for a tank as an example is as follows,
State: danger level of the tank,

Action: quantity of gas transfer between tanks and module
gas concentration adjustments, and

Reward: degree of improvement at the danger level of the
tank.



Other
connected
tanks

[action:at

- state:xtﬂ

module
action:@,
——

(4
@ oo
\ ’ < statelx,
reward:i‘t

Fig.3 The concept of state, action, and reward

Tablel Definition of dangerous level

Gas quantity in the tank Danger
Lower limit Upper limit level

Maxmz;;r:n?iltl}(l) wable Maximum quantity 2

(targett+Maximum | Maximum allowable )
allowable quantity) /2 quantity

(target+Minimum (target+Maximum 0

allowable quantity) /2 | allowable quantity) /2
Minimum allowable (target+Minimum 1
quantity allowable quantity) /2 i

Minimum quantity Minimum a}lowable D

quantity

The Action Selection Rule

The following procedure has been adopted as an action
selection rule.

(a) Calculate T=exp(5><n,./N) , where 0<7<1 |

and i is the number of a learning at present and N is the
target number of learning practices. Unique n; is defined
about each state,

(b) Generate a random number between 0 and 1. If it is less
than , further generate another to choose an action at
random,

(c) Otherwise select an action for the maximum Q value.

It is expressed in the above that learning is carried out with
random action selection in less experience stage, and that
an action is selected based on learning results after much
experience. In addition, the number of learning practices is
defined one by one for all states. If a disturbance turns less
experienced state from much experienced state, learning is
more activated. Therefore it is thought that more experience
in various disturbances can enhance the ability to adapt to
wider range of states.
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Implementation Environment

The siraulation software is built in Java language, which
realizes easily a distributed environment that is the
characteristic feature of an agent. In the material circulation
model, Oz tank, Oz recovery processor, COz tank and so on
are regarded as an agent, respectively. The specification of
a facility is described in a remote object imitating the real
world. On the other hand, the cooperation protocol (the
control law) is described in each agents. The remote object
is operated based on the control plan that is built up by the
agent. In order to enable the placement of all these
processes on discrete computer, Java RMI' ™ is used for a
means of communications.

Real World

Fig.4 The implementation environment overview

Simulation Conditions

Simulation was carried out using the built software. The
given conditions are shown below.

- As for plants, rice, soybean, lettuce, tomato, sweet potato,
and sesame are grown. The amount of cultivation is
determined so that one person can live. The length of stay is
assumed as 800 days.

~ The plantation module is divided into some partitions for
each species. Shifting harvest time ensures stable ration of
foods.

- Since the tank capacity might be exceeded until the
material circulation reaches a steady state, the outer
buffer tanks are prepared. That is, when the outer buffer
tanks are used, the operation of CELSS becomes the open
system. After that, when the outer buffer tanks becomes
unused, it becomes the closed system.

- The lighting system of the plantation module provides
light/dark periods in a day to fluctuate the degree of plant
growth, '

- The RL parameter are determined as follows: learning
rate «¢= 0.4, a discount rate y =0.85, and target number
of learning practices = 5000.



- Simulation is carried out in the following pattern,
a. With no disturbance,

b. With disturbance,

¢. With no disturbance (taking over Q value of a),
d. With disturbance (taking over Q value of b),

“Taking over Q values of a” shows that simulation is
carried out once again using learning result of “a” from the
beginning.

- As a disturbance, the leakage of 2400g/day is added to the
oxygen tank for habitation module for three days at the
three timings (300,400,500th day).

Simulation Results

The history of content in the O» tanks for habitation module
are shown in Fig. 5 - 8.

Fig.6 is the simulation result with disturbance. It can be
shown that the variation of oxygen with disturbances added
on the 300th, 400th, and 500th day has become smaller in
order of 300th, 400th, 500th day. This shows that the
control law to adapt to the situation of the disturbance
occurrence could be obtained autonomously.

Fig.7 and 8 are the results of the repeated simulation by
using the result of learning (a set of Q value) obtained
through the simulations shown in Fig.5 and 6 respectively.
Though the phenomenon that the amount in the oxygen
tank in the habitation module increases rapidly on about
270th day is seen in Fig.7, such a phenomenon is not seen
in Fig.8. We consider that a better control law could be
obtained by the learning of the simulation result with the
disturbances. :

Conclusion

The above results lead to the following conclusions:
material circulation of CELSS can be simulated with the
application of MAS and RL. It has been shown that a
control rule and a cooperation rule are autonomously
gained by the learning,.

Furthermore, in order to express MAS, the Java RMI™
function is used. Consequently, facilities and agents can be
treated as independent processes, which enables the
addition and reconstruction of a facility easily. Thus, a
possibility to construct a highly expandable system has
been demonstrated by applying MAS to CELSS.

Future Subject

- Since the present Q table has a fixed size, it is not easy to
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succeed a learning result when a facility is appended.
Therefore it is essential to consider the management
method of learning results so that the existing learning
results can be succeeded.

- We will make CELSS model more precise so that
facilities of the whole CEEF are included.
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Fig.5 The history of [a] O: tank content (with no
disturbance)
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Fig.6 The history of [b] O: tank content (with disturbance)
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Fig.7 The history of [c] O: tank content(with no
disturbance, taking over Q value of a)
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Fig.8 The history of [d] O: tank content(with disturbance,
: taking over Q value of b)




