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Absract

A primitive conceptualization is defined as the set of all
intended situations. A non—primitive conceptualization is
defined as the set of all the pairs every of which consists of
an intended knowledge system and the set of all the
situations admitted by the knowledge system. The reality of
a domain is considered as the set of all the situation which
have ever taken place in the past, are taking place now
and will take place in the future. A conceptualization is
defined as precise if the set of intended situations is equal
to the domain reality. The representation of various
elements of a domain ontology in a model of the ontology
is considered. These clements are terms for situation
description and situations themselves, terms for knowledge
description and  knowledge  systems  themselves,
mathematical terms and constructions, auxiliary terms and
ontological agreements. It has been shown that any
ontology representing a conceptualization has to be
non—-primitive if either (1) a conceptualization contains
intended situations of different structures, or (2) a
conceptualization contains concepts designated by terms
for knowledge description, or (3) a conceptualization
contains concept classes and determines properties of the
concepts belonging to these classes, but the concepts
themselves are introduced by domain knowledge, or (4)
some restrictions on meanings of terms for situation
description in a conceptualization depend on the meaning
of terms for knowledge description.
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Introduction

At present the importance of studying properties of domain
ontologies is generally recognized. There are many
articles devoted to this problem. But the elements and the
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structure of domain ontologies are not defined precisely
yet as well as the representation of these elements and the
structure in ontology models. The goal of this report is to
make a contribution to solving this problem.

Existing Approaches to Defining the Notion of
a Domain Ontology (Background)

At present three main approaches to defining the notion of
a domain ontology and the notions of knowledge and a
conceptualization associated with it can be recognized.

The first one, arbitrarily called here as humanitarian,
suggests definitions in terms understood intuitively. Some
examples of these definitions can be find in the articles
[1-7]. The central merit of the humanitarian approach is
the attempts made within its framework to clarify a
meaningful essence of the notion of a domain ontology
and other ones associated with it. The key demerit of all
these definitions and the whole humanitarian approach is
that a technical notion necessary for solving technical
problems cannot be defined in such a manner.

The second approach to defining the notion of a domain
ontology can be arbitrary called the computer one. Within
the framework of the approach computer languages for
domain ontology representation have been developed.
Some examples of computer languages for domain
ontology representation are given in [8-11].

The third approach to defining the notion of a domain
ontology can be arbitrary called the mathematical one.
Within the framework of this approach some attempts are
made to define the notion of domain ontology in
mathematical terms, or by mathematical constructions
[12-14]. By and large the definitions of the mathematical
approach offer considerable advantages over the definition
of the computer approach, both for the fact that they have
less number of technical details at the same level of rigor,
and for explicit specialization in formalizing the notion of



a domain ontology. The central flaw, crucial for the
development of the mathematical approach, is absence of
any explicit assumptions about properties of domains, their
ontologies, conceptualizations and knowledge (which are
characteristic of the humanitarian approach), and explicit
association between these assumptions and some elements
of mathematical models.

Thus, it is possible to consider that till now no generally
accepted definition of domain ontology has been suggested
[5,6,15,16]. However, it is possible to select different
meaning of the term of domain ontology from the
overview (that has been considered in the article [17]). (1)
A domain ontology is the part of domain knowledge that is
not to be changed. The other part of domain knowledge
may be changed according to the domain ontology. (2) A
domain ontology is that part of domain knowledge that
restricts the meanings of domain terms. These meanings
do not depend on the other part of the domain knowledge.
(3) A domain ontology is a set of agreements about the
domain. The other part of the domain knowledge is a set of
empirical or other laws. The ontology determines a degree
of consensus among domain specialists of the domain
terms meaning. (4) A domain ontology is an external
approximation represented explicitly of a
conceptualization given implicitly. The conceptualization
is a subset of the set of all the situations that can be
represented. The set of situations corresponding to a
knowledge base is a subset of the conceptualization. This
subset is an approximation of the set of the situations
possible in the reality.

All these meanings of the notion of domain ontology

supplement each other.

In what follows an attempt will be made to give another
definition of the notion of domain ontology. But here some
basic methodological principles of this definition should
be formulated. (1).On the meaningful level a domain
ontology will be understood as a set of agreements
(domain term definitions, their commentary, statements
restricting a possible meaning of these terms, and also a
commentary of these statements). These agreements are a
result of understanding among members of the domain
community. So, they cannot be disproved by any empirical
observations. In their meaning they differ from empirical
or other knowledge that can be disproved by empirical
observations or in a different way. In this regard the notion
of a domain ontology is analogous to the notion of a
paradigm by T.S.Kuhn [18]. (2). Such properties of a
domain as its ontology, conceptualization, knowledge and
reality should be modeled by different parts of the same
mathematical construction. (3). An explicit
correspondence between these properties of domains and
elements of these mathematical constructions should be
defined. (4). A domain ontology model should contain
both formal elements and their meaningful comments in
terms understandable for specialists in the domain. (5). An
ontology and its model should be compact even for
complex domains containing many concepts.
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A Primitive Conceptualization and Ontology
of a Domain

We will consider that a professional activity is a
characteristic of a domain. This activity consists in solving
different tasks. Task solving needs professional knowledge.
the same for all the tasks. The professional knowledge and
also input and output data for every task can be
represented verbally. A domain is considered as a set of
the tasks, which are solved by specialists of this domain.
When solving a task, a person uses a finite set of objects
and relations among them. This finite set will be called a
situation (a state of affairs in terms of [14]). Contrary to
the definition given in [14], we will suggests that different
situation can contain different sets of objects. The set of all
possible situations in a domain which have ever taken
place in the past, are taking place now and will take place
in the future will be called the reality of the domain. Thus,
the reality is an infinite set of separated situations [19,20].
The reality has the property that the persons studying the
domain do not know the reality completely. Only a finite
subset of situations forming the reality and having taken
place in the past is known (although the information
forming these situations also can be not completely
known).

When solving tasks of a domain, a person uses an idea
about the domain. This idea can be represented as an
implicitly given set of intended situations called a
primitive conceptualization of the domain. Every adequate
conceptualization contains the reality of the domain [14].
Therefore, a primitive conceptualization is an external
approximation of the reality. To represent a
conceptualization it is necessary to have an appropriate
concept system. A concept system is a set of definitions
for basic and auxiliary concepts. To define a concept
system means to give terms for concept designations, to
define the capacity of every concept, and to define
relationships among the terms. Auxiliary terms are
introduced to make a concept system description more
compact. A value of an auxiliary term is defined by the
values of main and other auxiliary domain terms.
Mathematical terms  have universally accepted
interpretation but can belong to the set of domain concepts.
Therefore, these terms should be defined outside of the
concept system, in mathematics. Different domains can
require different mathematical terms.

One of the means for building concept system models is
the language of applied logic [21]. The language of applied
logic determines mathematical terms and constructions
used for concept system descriptions. The kemel of the
applied logic language determines a minimal set of logical
means. The standard extension of the language apart from
additional logical means introduces arithmetic and
set-theoretic constants, operations and relations. Every
specialized extension of the language gives us a possibility
to define both additional logical means and constants,
operations and relations of other divisions of mathematics,
i.e. additional mathematical terms.



The terms of the kernel of applied logic are:
a name n;

a variable v;

NandL;

t,—t,, where t, and t, are terms;

(x ty, ty, ..., ty), where ty,...,ty are terms;

1
2
3
4,
S
6 t(ty,-..,t), where t | t,....,t are terms;
7

J(t), where t is a term.
The formulas of the kernel of applied logic are:
1. t(ty,...,t), where t, t;,...,t are terms;

2. —|f|, f| & f2, f| \" fz, f| = fz, f1 <~ f2, where fl and fz

are formulas.

A proposition of an applied logical theory consists of a
prefix and a body. A prefix is a sequence of variable
descriptions  (vy:t))(v2ity)...(Vin't,) (bounded universal
quantifiers), where (v;:t;)) is a variable description, v; is a
variable, t; is a term for all i=1,...,m. The term t; contains
no free variables. For i=2,..., m only the variables v,
Va,...,Vi.; can be free variables of the term t; . A sequence of
variable descriptions can be empty. All the variables v,
V3,..., Viy are mutuatlly different.

The body of a proposition depends on the type of the
proposition. The types of propositions are a value
description for a name, a sort description for a name, a
restriction on the interpretation of names. Any free
variable which is a part of the body of a proposition must
be described in its prefix. If a variable is bound in the body
of a proposition then it cannot be a part of the prefix of the
proposition. The body of a value description for a name
has a form t, = t,, where t; and t, are terms. The body of a
sort description for a name has a form y(t,) = t;, where ¢,
and t, are terms. The body of a restriction on the
interpretation of names is a formula.

An applied logical theory named T(E,E,,....Ex), where
EE,,....Ex are the names of extensions of the language
used for representing the theory, is a pair <TS, SS>, where
TS is a finite set (perhaps empty) of names of other
theories, SS is a finite set (perhaps empty) of propositions.
Any applied logical theory T = <TS, SS> by definition is
equivalent to an applied logical theory <J, SS">, where
SS' is the result of the following process. Let us denote
ts(T) = TS, ss(T) =SS. Let TS;= ts(T) and SS;= ss(T).
Yits(t), SSi1 = SS;
teTS;

For every i = 1,2,... let TSy, =

U Yss(t). If TS, = & on a recurrent step n then SS'
IETS,‘

SS,.. The theory <&, SS™> will be called the reduction of

the theory <TS, SS>.
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Semauntics of terms and formulas determines the values of
terms and formulas and also the conditions under which
these values exist. In this case it is suggested that a
function a is given on the set of names. For every name
the value of the function is an interpretation of the name.
The values of terms and formulas will be defined in
relation to an interpretation function o and an arbitrary
admissible substitution 6 of values for all the free variables
in the term or in the formula. If a variable being free in a
term or in a formula is also free in the proposition
including the term or the formula then in an admissible
substitution 0 the value for the variable is determined by
the semantics of the proposition. But if a variable being
free in a term or in a formula is bound in the proposition
including the term or the formula then in an admissible
substitution 6 the value for the variable is determined by
the semantics of the term or of the formula in that the
variable is bound. Let J, ¢(t) denote the value of a term t
for an interpretation function a and an admissible
substitution 6, J, ¢(f) denote the value of a formula f for an
interpretation function o and an admissible 6, 6(v) denote
the value of a variable v  in the substitution 6.

The values of terms are defined by the following way.

1. Jue(m) = a(n), where n is a name; J,q(n) does not
depend on 6; the value J,g(n) exists if n is an
clement of the set J, o(N);

Joo(v) = 6(v), where v is a variable;

Joo(N) is the infinite set of all possible names; J, o(N)
does not contain all the names that are described in the
standard and in any used specialized extension of the
:language and also llN"’ IIL"’ "E"’":", ll_)", "X", ll:“’
Ilvl" ll&ll’ "_|", "<:>ll’ ll(‘l, ll)ll’ “:”’ llu.uell’ llfalse", l',ll’
"x", "I"; Joo(N) does not depend on o and O;

Joe(L) is the set consisting of two elements true and
false; Jo 6(L) does not depend on o and 6;

Jas(ti = ) is the set of all possible completely
defined functions from the set J,g(t;) to the set
Jo.o(t2); the value of the term exists if the both values
Joo(t) and  J,e(ty) are sets;

Tao(X t, ta, ..., ty) is the Cartesian product of the sets
Jao(t)s Juo(t2), ..., Juo(ty); the value of the term exists
if all the values Jq g(t1), Jao(t2), -.s Joo(ty) are sets; the
operation "x" has all the properties of Cartesian
product but associativity J, o(x(x t;, t), ) # Jao(x ti,
(x t, 3)); )

Jao(t(titos,t)) = @Jae(t)s Joo(ts),-, Joo(ty)) is the
value of the function ¢ which is the interpretation of
the name J,o(t) (ie. ¢ = a(J,p(t))), applied to the
arguments Jg o(ty),..., Joo(te); the value of the term
exists if the value J, ¢(t) is a name, having a sort (s'—>
s), where s' is the Cartesian product of the sets s, s,,....
s or a subset of the Cartesian product, s is a set, with
s#J0(L), <Joo(t), Joo(ta),-..s Joo(t)> € s'; in this case
Jeo(t(t,ta,-...tx)) € s; let us notice that if t' is such a



term that Ja‘e(t') = <Ja.e(tl), Ja.e(tZ)""a Ju,e(tk)> then
Jao(t(t)) = Joo(t(t1, 125, 1));

Juo(i(t)) = a(J,6(t)) is the interpretation of the name
Jao(t); the value of the term exists if J, g(t) is a name.

The values of formulas are defined in the following way.

Lo Jaolt(t,-sti)) < pUas(t), Jae(ta),., Jae(t)) is the
value of the predicate p, which is the interpretation of
the name J,o(t) (ie. p = a(J,6(t))) applied to the
arguments J, g(t)),..., Jo.6(ty); the formula has a value if
the value J,¢(t) is a name having a sort (s' — L),
where s' is the Cartesian product of the sets s, s,,..., Sk
or a subset of the Cartesian product, <I, g(t;), Joe(t2)s...,
Joo(t)>es'; let us notice that if t' is such a term that
Jeot) = oty Taolts)eors Juo(t)> then Joeft(t))
< T o(t(ty, b, 0));

Joo(—1)) < = Jo6(f)), i.e. the value of the formula —f,
is true if and only if the value J,g(f)) is false; the
formula has a value if the formula f; has a value for
the interpretation function o and the substitution 8;

Joo(fi & 1) < Juo(f1) & Joo(f2), i.e. the value of the
formula f;, & f; is true if and only if the both values
J.o(fi) and J, o(f;) are true; the formula has a value if
the both formulas f; and f, have values for the
interpretation function o and the substitution 9;

Joo(fi v £5) < Joe(f) v Jo6(fy), i.e. the value of the
formula f; v £, is true if and only if at least one of the
values J,o(f)) or J,o(f;) is true; the formula has a
value if the both formulas f; and f; have values for the
interpretation function o and the substitution 6;

Joo(fi = ) © T o(f) = Ju6(fy), 1.e. the value of the
formula f; = f, is true if and only if either the value
Joo(fy) is false or the both values J,g(f;) and J, o(f3)
are true; the formula has a value if the both formulas
f, and f; have values for the interpretation function o
and the substitution 8;

Jao(fi © £) © Joo(fi) < J,o(fy), i.e. the value of the
formula f; < f, is true if and only if either the both
values J, o(f1) and J, o(f2) are false or the both values
Juo(f1) and J o(fy) are true; the formula has a value if
the both formulas f; and f, have values for the
interpretation function o and the substitution 6;

Semantics of propositions determines the meaning of the
propositions and also the conditions under which
propositions have meaning.

The set of admissible substitutions 6 for free variables of a
proposition is formed in the following way. If the prefix of
the proposition is empty then the set of admissible
substitutions of the proposition consists of the only empty
substitution. Let the prefix of the proposition be of the
form (vit)(vats)..{vmitw), then the set of admissible
substitutions is the set of all the substitutions of the form
6=(v,/cy,....vn/Cn), Where ¢ € I g (1)), c2€J0:(t2), -.., € €
Juom(tm), ©; is the empty substitution, 8, =(v,/c)),...,
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Bm=(vV1/C1,.-.,Vm-1/Cm1). The proposition has meaning if
Jaoi(t1), Jeg2(t2),---s Joom(tm) are such sets that the set of
admissible substitutions is finite.

A value description for a name with the body t; =t, has
the following meaning: for every admissible substitution 0
the interpretation of the name J,q(t;) is Joo(t). The
proposition has meaning if for all the admissible
substitutions the value J,q(t;) is a name, the value of the
term  t; exists for the interpretation function o and for the
substitution 8 and also it does not follow from the logical
theory that the name J, ¢(t;) has more than one value. In
addition, if the name J,g(t)) has a sort s then for a
proposition to have meaning it is necessary that the value
Jae(t2) should be an element of the set s. A set of value
descriptions for names can contain recursive value
definitions for names.

A sort description for a name with the body y(t,) = t, has
the following meaning: for every admissible substitution 8
the name J, ¢(t;) has the sort T, ¢(t;). The proposition has
meaning if for all the admissible substitutions J, g(t;) is a
name, J,q(ty) is a set and it does not follow from the
logical theory that the name J, g(t;) has more than one sort.
A set of sort descriptions for names can contain recursive
sort definitions for names.

A restriction on the interpretation of names has the
following meaning: an interpretation function o is
admissible if J,g(f) = true for all the admissible
substitutions 6, where f'is a formula that is the body of this
proposition. The proposition has meaning if there is such
an interpretation function that the formula f is true for all
the admissible substitutions 6.

Now we define semantics of applied logical theories. The
set of names being parts of an applied logical theory can
be divided into two nonintersecting subsets: a set of
uniquely interpreted names and a set of ambiguously
interpreted names. A name is uniquely interpreted if one of
the following conditions is met:

- the applied logical theory determines neither any sort nor
any value for a name n; in this case for any o the
interpretation o(n) = n;

- the applied logical theory determines a value e for a
name n and the value does not depend on the
interpretations of other names; in this case for any o the
interpretation a.(n) = e;

- the applied logical theory determines a value e for a
name n and the value is uniquely determined by the
interpretations of other names.

All the other names are ambiguously interpreted. For every
such a name the applied logical theory determines a sort s
but does not determine any value. In this case any
interpretation function o must meet the restriction ci(n)es.

An interpretation function o is admissible for an applied
logical theory if all the propositions of the theory reduction
have meaning for this interpretation function. An applied



logical theory is semantically correct if there is an
admissible interpretation function «. Since for every
proposition the set of admissible substitutions is
determined uniquely but the admissible interpretation
function is determined ambiguously then a semantically
correct applied logical theory determines a set of
admissible interpretation functions. It is easily seen that
under these conditions the set of ambiguously interpreted
names of any semantically correct applied logical theory is
finite for any admissible interpretation function.

The constriction of an admissible interpretation function o
to the set of ambiguously interpreted names of an applied
logical theory will be called a model of the theory. A
model of an applied logical theory can be represented by
such a set of value descriptions for names that after adding
the set to the theory all the names of the new theory built
in such a way will be uniquely interpreted.

Now we consider an example of definition of a
specialized extension of the applied logic language
(another examples can be find in [21]).

Example 1. The specialized extension
Differentiation of unary functions
of the language of applied logic will be described. The
term is

1. dt(v)/dv, where t(v) is a term depending on the variable
v; JoB(dt(v)/dv) is the derivative of the function Jab(t(v))
with respect to v; the value of the term exists if the
function JuB(t(v)) is a differentiable function.

The extension defines no new types of formulas.

An applied logical theory [21] is a model of a concept
system. The definitions of basic terms are represented by a
set of sort description for names. The definitions of
auxiliary terms are represented by a set of value
descriptions for names. The relations among terms are
represented by a set of restrictions on the interpretation of
names. The sort description for a term determines the set
of value models for the term. In any (real or imaginary)
situation only an element of this set can be a value of the
term. Thereby, the sort description for a term determines a
model of the capacity for the concept designated by the
term. A model of the capacity for a concept can be either a
finite or infinite set. The applied logical theory of Example
2 can be considered as an example of a concept system.

A primitive ontology of a domain determines an external
approximation of the primitive conceptualization of the
domain (a conceptualization considered as the set of all
intended situations is a subset of the set of all the models
for its ontology), since the set of ontological agreements
can be incomplete. A primitive ontology of a domain is a
concept system of the domain reality, i.e. the primitive
ontology determines the terms of the primitive
conceptualization (terms for situation description).

One of the means for building a primitive ontology model
is an unenriched logical relationship system without
parameters [21]. An unenriched logical relationship system
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O without parameters. is a semantically correct applied
logical theory &, having at least one ambiguously
interpreted name. The set of propositions of the reduction
of ® will be called the set of logical relationships.

If an unenriched logical relationship system O without
paramneters is considered as a primitive ontology model,
then the set all models for the set ® of logical relationships

is also an external approximation of the domain
conceptualization model. An  unenriched logical
relationship system O without parameters can be

considered as a primitive ontology model of a domain, if
each of its logical relationship has a meaningful
interpretation that a community of the domain agrees with,
and the whole system 1s an explicit representation of a
conceptualization of the domain.

Example 2. An unenriched logical relationship system
without parameters which is a model of a simplified
ontology of Dynamics: Oy = T{(ST, Intervals,
Differentiation of unary functions), where
T(ST, Intervals, Differentiation of
unary functions) is an applied logical theory.
The unknowns of the system are bodies, time
moments, mass, coordinate, and
force.

The applied logical theory T((ST, Intervals,
Differentiation of umnary functions) = <,
SS,>, where SS, consists of the following propositions.

The value descriptions for names (the definitions of
auxiliary terms).

2.1.1)

speed (Mvy: bodies )(A(va
R)dcoordinate (vi)}(vy)/dvy))

Speed is the derivative of coordinate
with respect to time.

acceleration (Mvy: bodies)(A(vy:

R)dspeed (v))(vo)dvy))

Acceleration isthederivativeofspeed
with respect to time.

(2.1.2)

The sort descriptions for names (the definitions of terms
for situation description).

22.1)y(bodies)={}N

B o dies me ans a set of physical bodies.

(222) ytime moments) = (bodies —
{1 (R[0,»]))
Time moments means a function that

takes a body and returns the set of the time
moments in which the body was observed in the
situation; the unit of measurement of time is s.

(223)y(mass)=(bodies — R[0, x])

M ass means a function that takes a body and
returns its mass; the unit of measurement of mass
is kg.



(224)y(coordinate)=(bodies —» (R =>R))

Coordinate means a function that takes a
body and returns a function that takes a time
moment and returns the coordinate of the body at
the moment; in this model the space is taken to be
one-dimensional; the unit of measurement of
coordinate is m.

(225 y(force)=(bodies—> (R>R[0,x])

F or c e means a function that takes a body and
returns a function, that takes a time moment and
returns the force acting on the body at the
moment; if the force is positive then the direction
of the force vector and the direction of the body
movement are the same; if the force is negative
then the directions are opposite; the unit of
measurement of force is N.

Ontological agreements about a domain are represented by
a set of restrictions on the interpretation of names of the
unenriched logical relationship system which is an
ontology model of the domain. Ontological agreements are
explicitly formulated agreements about restrictions on the
meanings of the terms in which the domain is described
(additional restrictions on capacity of the concepts
designated by these terms). If a domain ontology model is
an unenriched logical relationship system without
parameters, then all the ontological agreements are only
constraints of situation models. The set of ontological
agreements, in this case, can be empty, too. The ontology
model of example 2 is an example of an ontology model
represented by an unenriched logical relationship system
without parameters and with the empty set of ontological
agreements.

Objects in situation models can be represented: by
elementary mathematical objects (numbers and so on); by
names having neither sort nor value [21] (such a name is a
designation of an object); by structural mathematical
objects (sets, n-tuples, and so on) constructed of
elementary or structural mathematical objects or names
having neither sort nor value by composition rules defined
in the language of applied logic. In Example 2 the values
of the speed, acceleration and mass are represented by
functions whose values are real numbers; the values of the
coordinate of a body and the value of the force acting on a
body are represented by functions whose values are also
functions; the values of time moments of body
observations are represented by a function whose values
are sets of real numbers; the bodies in situations are
represented by names having neither sort nor value.

The set of names having neither sort nor value and used as
designations of objects (and their components) in situation
models can be determined explicitly or implicitly in a
model of primitive ontology of a domain. In the former
case, all these names appear in sort descriptions for
unknowns. A domain ontology model can determine only
some of the names having neither sort nor value and used
in situations for designating objects. The other names are
determined by a model of situation and may have different
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meaning in different situations. In Example 2 the names
having neither sort nor value and not fixed by the domain
ontology model are the designations of bodies.

Unknowns represent relations among objects depending on
situations. In  different situations the relations
corresponding to the same unknown can be different.
Every objective unknown designates a role that an
(unique) object of the situation plays in each situation, and
also in every situation there is its own object playing this
role. In Example 2 the unknown bo die s represents the
role that is played by a set of bodies. Every functional
unknown designates a set of functional relations. For each
situation this functional relation is the one among objects
of the sitnation. For different situations these relations
corresponding to the same unknown can be different. In
Example 2 the unknowns time moments,
mass, coordinate and force represent
functional relations between objects of a situation.
Analogously, every predicative unknown designates a set
of nonfunctional relations. For each situation this
nonfunctional relation (it may be empty) is the one among
objects of the situation. For different situations these
relations corresponding to the same unknown can be
different. Thus, every unknown can be considered as a
designation of a one-to-one correspondence between
situations and the values of the unknown in these
situations. The set of the unknowns, whose values form a
model of a situation, will be called the structure of the
situation model.

The sort description for an unknown determines the set of
value models for the unknown. In any (real or imaginary)
situation only an element of this set can be a value of the
unknown. Thereby, the sort description for an unknown
determines a model of the capacity for the concept
designated by the unknown. A model of the capacity for a
concept can be both a finite and infinite set. In Example 2
propositions 2.2.1 - 2.2.5 determine models of the capacity
for concepts designated by the unknowns bodies,

time moments, mass, coordinate,
and force. A model of a (real or imaginary) situation is
a set of values of the unknowns for the unenriched logical
relationship system representing a domain ontology model.
A model of a situation can be represented by a set of value
descriptions for all the unknowns.

Example 3. A model of a situation for Dynamics (a
domain ontology model is represented in Example 2)

(31)bodies ={mass point}

Theonlybody mass point isconsidered.

(32) time moments = (Mv: {mass
point}) /(v=mass point = {0, 5
10})/

The motion of mass point was observed in 0, 5,

and 10s afterthebe ginnin g of the situation.
(33)mass =(Mv: {mass

point = 0,002/

point})/(v=mass



The mass of mass point is2g.

(34) force = (A(v: {mass point}) (v=mass
point= (A(v;: {0,5,10})0))

No force acted on mass point atany moment of
its observation.

(3.5)coordinate =(Mv: {mass point})(v=
mass point = (At {0,5,10})5*1t))

The coordinate is changed according to the law x = 5t

A model of a primitive conceptualization is the Cartesian
product of capacity models for concepts designated by
unknowns from which the elements contradicting to
constraints of situation models are excluded. To select the
situations belonging to the domain reality, it is necessary
to define a knowledge system for the domain. A
knowledge system of a domain is a set of empirical or
other laws of the domain representing additional
restrictions on the meanings of terms for situation
descriptions. If an unenriched logical relationship system
without parameters is a model of a primitive ontology of a
domain, then any of its enrichments [21] is a model of a
knowledge system for the domain. The primitive ontology
model introduces all the concepts for the description of the
domain. In this case any enrichment k of the system O is a
set of logical relationships — restrictions on the
interpretation of unknowns. These laws represent
empirical or other laws of the domain. Since this
enrichment does not introduce any new names, it cannot
contain any value or sort descriptions for names [21].

Example 4. A model of a knowledge system for Dynamics
(a possible enrichment of the system without parameters of
Example 3) is represented by a proposition (by a
restriction on the interpretation of unknowns.

(4.1) (vi: bodies)(vy: time moments(vy))
force(vy, vy) = mass(vy) *
acceleration (vy,Vvy)

Newton’s second law of motion.

A primitive ontology specifies the following restrictions
on the contain of a knowledge system: the set of the
propositions representing the knowledge system must be
consistent; the set of the propositions representing both the
knowledge system and the ontology must be consistent. A
pair consisting of a primitive domain ontology model O
and a knowledge system model k is a model of the domain.
If a knowledge system model is given, then the domain
reality model consists of all the situation models for which
all the propositions of the knowledge system model and
the domain ontology model are true.

We will suggest that for any primitive conceptualization of
a domain the hypothesis on its adequacy is true: the reality
is a subset of the set of intended situations. In view of the
reality definition it is evident that this hypothesis cannot be
verified. Hence, every adequate conceptualization imposes
certain limitations on the notion of the reality.
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Non-Primitive Conceptualization and
Ontology

A relation between the set of intended situations on a
domain and the set of intended knowledge systems of the
domain will be called non-primitive conceptualization of
the domain. A non-primitive ontology is an explicit
representation of a non-primitive conceptualization. A
non-primitive ontology defines both terms for situation
description and terms for knowledge description, i.e. the
non-primitive ontology consists of two concept systems
and 2 correspondence between them.

One of the means for building a model of a non-primitive
domain ontology is a pure unenriched logical relationship
system with parameters [21]. An unenriched logical
relationship systems with parameters is a pair O = <®, P>,
where @ is a semantically correct applied logical theory
and P is a nonempty proper subset of the set of
ambiguously interpreted names of the theory @, P is called
the set of parameters. Ambiguously interpreted names of
the theory @ which do not belong to the set P, will be
called unknowns of the system O.

If an unenriched logical relationship system with
parameters is a domain ontology model then all the
unknowns of the system are models of terms for situation
description, and all the parameters of the system are
models of terms for knowledge description.

Exarnple 5. A model of a simplified ontology for medical
diagnostics in which a single examination of the patient is
only considered.

The value descriptions for names

(5.1.1) sets of values =({} N)u(]) v
((1R)

Sets of values means the set of possible
value ranges for all signs; these ranges can be sets of
names (ranges of qualitative values), integer-valued
and real-valued intervals (ranges of quantitative
values).

The sort descriptions for names.

(52 y(signs)={}N

Signs means a finite set of medical sign names.
(522)y(diseases)={}N

Diseases means a finite set of disease names.

(523) y(possible values) = ( signs —
sets of values)

Possible values means a function that
takes a sign and returns its possible value range.

(524) y(normal values) = ( signs —
sets of values)

Normal values meansa function that takes a
sign and returns its normal value range.



(5.25) y(clinical
- ({}signs))

picture) = (diseases

A clinical picture isa function that takes
adisease and returns a subset of the set of
signs which is the clinical picture of the
disease.

(5.2.6) y(values
disease) =
(2, v) € clinical
sets of values)

for a sign and a
({(vi (x diseases, signs))
picture(n(l, v))} »

for a sign and a
disease means a function that takes a
disease anda sign fromthe clinical
picture ofthedisease and returns the set of
values which are possible for the s i gn and for the
disease.

Values

(52.7)y(diagnosis)= diseases

A diagnosis is the disease which the
patient is ill with ; in this model diagnosis
canbeeithera disease orhealthy.

(52.8)(v:signs) y(v)=possible values(v)

Every term from the set s i g n s means the value of
thesi gn in the patient.

The restrictions on the interpretations of names

(53.1)(v:signs)(normal values(v) # )
& (normal values(v) c possible
values({v))

For any sign its set of normal values isa
nonempty proper subset of its set of possible
values.

(532)clinical picture(healthy)=J

Clinical picture ofhealthy contains

nosigns.
(5.3.3) (v: signs \
picture(diagnosis))
normal values(v)

clinical

i) €

Forevery sign notbelongingtotheclinical
picture of the disease which the patient is
ill with, the value of the s i g n can be only normal.

(534) (v: clinical picture(diagnosis))

jJv) € values for a sign and a
disease(diagnosis,v)
For every sign from the clinical

picture of the disease which the patient is
ill with, the value of the sign is possible for the
sign andforthedisease.

The set of parameters Py {signs, diseases,

possible values, normal values,
clinical picture,values for a sign
and a disease}. The unknowns are
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diagnosis and also the names being elements of the
set of names which is the interpretation of the parameter
signs.

If a domain ontology model is an unenriched logical
relationship system with parameters then the set of
ontological agreements can be divided into three
nonintersecting groups: constraints of situation models, i.e.
the agreements restricting the meanings of terms for
situation description; constraints of knowledge models, i.e.
the agreements restricting the meanings of terms for
knowledge description; agreements setting up a
correspondence between models of knowledge and
situations, i.e. the agreements setting up a correspondence
between the meanings of terms for situation and
knowledge description. Every proposition of the first
group must contain at least one unknown or a variable
whose values are unknowns and cannot contain any
parameters; every proposition of the second group must
contain at least one parameter or a variable whose values
are parameters and cannot contain any unknowns; every
proposition of the third group must contain at least one
parameter or a variable whose values are parameters and at
least one unknown or a variable whose values are
unknowns. In doing so, the definitions of auxiliary terms
should be taken into account. In Example 5 propositions
5.2.1-5.2.6 define the terms for knowledge description,
propositions 5.2.7-5.2.8 define the terms for situation
description, the set of constraints on situation models is
empty; the set of constraints on knowledge models consists
of propositions 5.3.1 ~ 5.3.2; the set of agreements setting
up the correspondence between models of knowledge and
situations consists of propositions 5.3.3 — 5.3.4.

If a model of a domain ontology is an unenriched logical
relationship system with parameters, then the parameters
of the system are the domain terms which are used for
knowledge description. If a model of domain ontology is
unenriched logical relationship system O with parameters
then any enrichment k of the system O is a set op of the
parameter values for the system O [21]. A value of an
objective parameter determines a feature of the domain, a
set of names for situation description, or a set of parameter
names. Every enrichment (a knowledge base) can
introduce new names as compared with the ontology -
terms for situation and knowledge description. Functional
and predicative parameters represent empirical or other
laws of the domain. The value of every functional or
predicative parameter is some relation among terms and/or
domain constants. In this case domain knowledge is
described at a higher level of abstraction than in the case
of primitive domain ontology. The values of parameters
can be represented by a set of propositions which are value
descriptions for names.

The sort description for a parameter determines the set of
value models for the parameter. In any knowledge model
only an element of this set can be a value of the parameter.
Thereby, the sort description for a parameter determines a
model of the capacity for the concept designated by the
parameter. A model of the capacity for a concept can be
both a finite and infinite set.



A model of a non-primitive conceptualization is a relation
between the set of all the intended situation models and the
set of all the intended knowledge system models. If an
ontology model is a pure unenriched logical relationship
system with parameters O, then a model of a set of
intended knowledge systems of the domain is the set of all
the enrichments of the system O [21]. This set of
enrichments is the Cartesian product of capacity models
for concepts designated by parameters from which the
elements contradicting to constraints on knowledge models
are excluded. A model of a set of intended situations is the
Cartesian product of capacity models for concepts
designated by unknowns from which the elements
contradicting to constraints on situation models are
excluded. A model of a non-primitive conceptualization 1s
the Cartesian product of the set of intended situation
models by the set of intended knowledge system models
from which the tuples contradicting to constraints on
correspondence between these two concept system models
are excluded.

A domain ontology will be called precise if the
approximation of the conceptualization determined by the
ontology is precise. A conceptualization will be called
precise if it is the same as the domain reality. It is apparent
that the domains related to the real world have no precise
conceptualization. But conceptualizations are possible for
theoretical (imaginary) domains (mathematics, theoretical
mechanics, theoretical physics and so on), for which their
precision is postulated.

A Comparison between Different Ontology
Classes

Now let us discuss the question about capabilities of
primitive and non-primitive domain ontologies. Any
ontology represents a non-primitive conceptualization (1)
if the conceptualization contains intended situations of
different structures; (2) if the conceptualization contains
concepts designated by terms for knowledge description;
(3) if the conceptualization contains concept classes and
determines properties of the concepts belonging to these
classes, and concepts themselves are introduced by domain
knowledge; (4) if in the conceptualization some
restrictions on meanings of terms for situation description
depend on the meaning of terms for knowledge
description.

The more compactly and clearly a domain ontology
describes agreements about domains, the better the
conceptualization represented by this ontology is. In this
regard primitive ontologies require for every term for
situation description to appear explicitly in these
agreements. For real domains (such as medicine) their
ontologies turn out immense because of large number of
these terms. At the same time, the non-primitive ontologies
describe agreements about domains for groups of terms,
rather then only for isolated terms through using terms for
knowledge description. In doing so the majority of the
terms for situation description and some terms for

knowledge description do not appear explicitly in
agreement descriptions. As a result, these agreements
becorne compact and more general.

The more understandable knowledge bases represented in
terms of an ontology are for domain specialists, the better
the domain ontology is. In this respect primitive ontologies
represent knowledge bases as sets of complex propositions
represented formally by logical formulas. The more
complex these formulas are, the more difficult it is to
understand them. At the same time, the non-primitive
ontologies introduce special terms for knowledge
description. The meanings of these terms are determined
by ontological agreements, and their connection with terms
for situation description among them. In real domains
these terms are commonly used to ease mutual
understanding and to make communication among domain
specialists economical. The meanings of these terms are,
as a rule, understood equally by all domain specialists. The
role of these terms is to represent domain knowledge as a
set of relation (of simple facts). It is considerably easier for
domain specialists to understand the meanings of these
simple facts than the meanings of arbitrary complex
propositions.

The more precise approximation of a conceptualization a
domain ontology assumes, the better it is. First, let us
remark that it follows from the theorem about eliminating
parameters of enriched logical relationship systems [21]
that if there is a domain model represented by an enriched
logical relationship system with parameters which
determines an approximation of the domain reality, then
there is a model of the domain represented by an enriched
logical relationship system without parameters which
determines the same approximation of the domain reality.
In this regard domain models represented by enriched
logica. relationship systems with parameters offer no
advantages over domain models represented by enriched
systems without parameters.

As for domain ontology models, every one represented by
an unenriched logical relationship system determines some
approximations for both the set of intended domain
situation models and for the set of intended domain
knowledge models. If a model Op of a domain
non-primitive ontology represented by an unenriched
logical relationship system with parameters determines an
Y A(< Op,k >) of the set of intended
ke En(Op)
domain situation models, then the unenriched logical
relationship system Oy without parameters quasiequivalent
to Op determines the approximation YA(< Oy, k>)
keEn(Oy)
of the same set of intended situation models [21]. Here
<Op, k> is a domain model with a knowledge base k,
A(<Op, k>) is the domain reality model, En(Op) is the set
of all intended knowledge bases. Let h : En(Op) — En(Ox)
be the map defined by the theorem about eliminating
parameters of unenriched logical relationship systems and
H = {h(k) | k € En(Op)}. Then  YA(<Oy,k>) =
keEn(Oy)

approximation

-418-



YA(<Oyx,h(k)>) w Y A(<Ox,k>); but by
keEn(Op) keEn(Ox \H
the theorem about eliminating parameters of enriched
logical relationship systems Y A(< Oy, h(k) >)

keEn(Op)
YA(<Op,k>) , e YA(< Oy, k>) =
keEn(Op) keEn(Oy)
 YA<Op k) U Y A(<Oy,k >) . Thus, the
keEn(Op) keEn(Oxy WH

approximation of the set of intended situation models
determined by the system Oy, is less precise than the
approximation represented by the system Op.

If a model Op of a domain ontology represented by an
unenriched logical relationship system with parameters
determines an approximation En(Op) of the set of intended
domain knowledge models, then the unenriched logical
relationship system Oy without parameters determines an
approximation En(Ox) of the same set of intended

knowledge models. In this case H is a subset of En(Oy), i.e.

the approximation of the set of intended knowledge
models- determined by the system O, also is less precise
than the approximation determined by the system Op. In
what follows we show some reasons of this fact.

Let us consider the case when a domain non-primitive
ontology model is a pure unenriched logical relationship
system Op with parameters. First, the constraints of
knowledge models represented by Op determine the set
En(Op) as a proper subset of the set of all possible
interpretations of the system Op's parameters, whereas, if
the system Oy without parameters is a domain primitive
ontology model, then this ontology model contains
practically no restrictions on the set En(Oy). Second, for
the theorem about eliminating parameters of enriched
logical relationship systems a set of formulas representing
empirical and other domain laws can be deduced from
every proposition setting up a correspondence between
knowledge models and situation models and from
parameter values. These formulas contain no parameters. It
is obvious that the forms of these formulas are restricted
and determined by the forms of propositions setting up a
correspondence between knowledge models and situation
models. At the same time, if a domain primitive ontology
model is an unenriched logical relationship system Oy

without parameters, then this system imposes no
restrictions on the form of formulas entering its
enrichments.

Domain non-primitive ontologies are thus seen to offer
certain advantages over domain primitive ontologies
usually considered in literature (see also [17,22]).
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