Conjunctive Query Rewriting in the Context of Data Integration

Kang-Sik Moon and Jeon-Young Lee

IIS Lab., CSE Dept., POSTECH
San31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, South Korea
Tel: +82-54-279-5662, Fax. +82-54-279-8498, E-mail: {ksmoon, jeon}@postech.ac.kr

Abstract

The problem of query rewriting using views has interested
in the context of data integration where source data is
described by the views on global relations. When the query
and views are of the form of conjunctive queries, the
rewriting is a union of conjunctive queries each of which is
contained in the original query and consists of only views.
Most previous methods for query rewriting using views are
2-step algorithms. In the first step, they identify the views
that are useful in rewriting and in the second step they
construct all correct rewritings by combining the views that
gained in the first step. The larger the number of selected
views in the first step, the larger the number of candidate
rewritings in the second step. We want to minimize the
number of selected views in the first step by defining
stringent conditions for a view to be participated in
rewritings. In this paper, first we offer a necessary
condition for the existence of a rewriting that includes a
view. For the common case that predicate repetitions are
not allowed in the bodies of views, we show that our
algorithm for testing the condition is done in a
polynomial-time. Second, we offer an algorithm to
construct contained rewritings using the view instances that
are computed in the first step. The exponential
containment-mapping test in the second step is not needed
in our algorithm.

Keywords:

Query containment; Query rewriting; Contained rewriting;
Data integration

1. Introduction

Recently, the problem of query rewriting using views has
received a lot of interest in the fields of AI and Database
systems; we refer to the survey by Levy for background [5].
In the context of conventional query optimization, the
equivalent rewriting is considered; that is, the solution of
the problem is to find equivalent rewritings of the user
query. In contrast to the case of query optimization, in the
context of data integration where data sources are
considered to store materialized views over a global
database schema [13], we usually cannot find a rewriting
that is equivalent to the user query because of the data

source’s limited coverage. Instead, we search for all
contained rewritings, each of which is contained in the user
query, given the available sources.

Levy [6] showed that all possible equivalent rewritings of a
query can be obtained by considering containment
mappings [2] from the bodies of the views to the body of
the qeury. They also showed that the problem was
NP-completeness for conjunctive queries with no built-in
predicates. But their result is not appropriate in the
contained rewriting problem. In the case of the contained
rewriting, the views can have predicates that do not appear
in the body of the query so that there are no containment
mappings from the bodies of the views to the body of query,
but a rewriting using the views can exist.

Most previous algorithms for the contained rewriting
problem are 2-step algorithms. In the first step, they
identify the views that are useful in rewriting. In the second
step, they construct all sound rewritings by combining the
views that are gained in the first step. The larger the
number of selected views in the first step, the larger the
number of candidate rewritings in the second step. We want
to minimize the number of selected views in the first step
by defining stringent condition for a view to participate in
the rewritings.

In this paper, we show that the contained rewriting problem
is closely related to some containment test, called filter
containment, between a view and some partial queries of
the user query. By testing the containment, the role of a
view in some rewritings can be determined earlier, thereby
eliminating useless views from the search space of the
second step is possible. We show that for the common case
when predicate repetitions are not allowed in the bodies of
views, the containment test is done in polynomial-time. In
chapter 3, we introduce the filter containment problem that
is the theoretical basis of the contained rewriting problem.
In chapter 4, we describe our query-rewriting algorithm
using the filter containment.

2. Preliminaries

Views and user queries are represented using the logical
rule notation described in [12]. A rule has the form

-441-

g X) =r(X1),....,r(X&)

where ¢, and r,, ..., r, are predicate names and Y, }1,
..., X« are tuples of variables or constants. The head of
the rule is g(X). The body of the rule is the conjunction of

subgoals r(X1), ..., r(X«). A variable in X is called
a distinguished variable. A variable that occurs in the body
and is not a distinguished variable is called an existential
variable (or non-distinguished variable). A shared variable
is a variable that appears in more than one subgoal. A
subgoal in the body of the rule represents a logical database
relation. We use 4 = V,, .., V, to denote views that are
defined over the database relations. We assume that all
variables in a query and views initially have distinct names,
so that no two views (or query and view) share the same
variable. We also assume that all rules are safe.

Let 5 and ¢ represent two arbitrary predicate occurrences
with the same name. We say that there is a predicate
mapping s—t if there is a symbol mapping for the symbols
in s under which s is made syntactically identical to £ such
symbol mapping is termed the symbol mapping induced by
the predicate mapping. In a predicate mapping s—7, ¢ is the
destination of s under it. Two symbol mappings are said to
be consistent if no variable is assigned a different value and
constant is mapped to only the constant by the two symbol
mappings, and a pair of predicate mappings is said to be
consistent if the symbol mappings induced by the mappings
are consistent.

Conventionally, a query C, is contained in C, if there is a
containment mapping h: C; = C, [2]. In this paper, we
define containment using predicate mappings as follows:

Definition 2.1. (Query containment) Consider two queries.
C: a(}) al X1), ., a X«k).

Cob(Y) =by(Y1), ... b{Y1).
A query C, contains a query C, if and only if:

1. For all i and some j, there is a predicate mapping
a;—b; and each pair of predicate mappings is
consistent and,

2. All distinguished variable in C;, maps to a
distinguished variable in C, under the union of
symbol mappings induced by the predicate
mappings described in 1. [

Then the conventional containment mapping h: C, = G
may be defined as the union of symbol mappings induced
by the predicate mappings a,— b;, for all i. (Note that the
conventional containment mapping must map the head of
C, to the head of C,; however, in this paper we test just

whether A(X Yo Y).

Let R be a query over / , and consider a subgoal v(_)?) of
R, an instance of a view Ve . By the expansion of this

-442-

subgonal Exp(v(X)), we mean the body of V, in which we
renarne the distinguished variables of V by the

corresponding variables in X , and retain the other
variables. The expansion of R then is a query E over the
datatase relations obtained as follows. The head of E
equa.s that of R. The body of E is formed by including an
expansion of each subgoal of R.

Definition 2.2. (Contained rewriting) Given a query Q
and views / , a query R over / is a contained rewriting
if the expansion of R is contained in Q. A rewriting R, with
expansion E, is a maximally contained rewriting if (1) R is
a contained rewriting of O, and (2) for any other rewriting

R’ of O, with expansion E’, if £’ is contained in E. [

In this paper, we discuss an algorithm to obtain a
maximally contained rewriting of a query using views. In
an actual, the maximally contained rewriting is a union of
all possible contained rewritings. We say that a view v
covers a query subgoal g in a contained rewriting if g—p
appears in the set of predicate mappings that result in the
containment mapping from the query to the expansion of
the rewriting, where p is a subgoal of Exp(v). In this paper,
we consider only the contained rewritings whose views
cover at least more than one query subgoal.

Example 2.1. Consider the following query () and views.

Q : q(X,W) :'pl(x,y)’ PZ(Y:Z)a p3(Z,‘A’,W).

Vi :vi(al,el,dl) - pl(al,bl), p2(bl,cl), p3(dl,el,fl).

V, 1 1(a2,b2,c2) :- p3(a2,b2,c2), p4(c2,d2).

V3 : w3(b3,¢3,d3,e3) :- p2(a3,b3), p3(c3,d3,e3), p4(a3,3).
Then, there are two contained rewritings R, and R, like
followings.

Rl : q(X,W) - V[(X,Z,dl), Vz(Z,‘A’,W).

Ry 1 g(x,w) - vi(x,2,d1), v3(b3,2,’A’,w).

We have the following expansions of the corresponding
rewritings:

Ey : q(x,w) - pl(x,bl), p2(bl,z), p3(dl,el,f1), p3(z,'A’,w),
pa(w,d2).

E; : q(x,w) - pl(x,bl), p2a(bl,z), p3(dl,el,f1), p2(a3,b3),
p3(z.'A’\w), p4(a3,f3).

We know that the rewriting R, is sound by considering the
containment mapping from Q to the expansion E; {x—X,
y—obl, z—z, ‘A’>’A’, wow}; it is obtained from the
union of the symbol mappings induced by the forced
predicated mappings p1(x,y)—>p1(x,bl), p2(y,2)—p2(bl,z),
and p3(z,'A’,W)->p3(z,A’,w). In the case of R,, the
containment mapping is {x—X%, y—bl, z—>z, ‘A’—>’A’,
w—w}. Then, the maximally contained rewriting of Q is
R|U RzD

In the above example, v|(x,z,d1) covers the query subgoals
pl(x,y) and p2(y,z) in the rewriting R;,, because the

subgoals map to the view subgoals pl(x,b1) and p2(bl,z),
respectively, which are in the expansion of vi(x,z,d1). In the
same way, vx(z,"A’,w) covers the query subgoal p3(z,'A’,w)
in the rewriting R, because the subgoal map to the subgoal
Pp3(z,°A’,w), which is in the expansion of v,(z,"A’,w).

Given a query Q and a subset of query subgoals G, the
partial query of Q on G is a query obtained as follows. The
body is a conjunction of subgoals in G. The head variables
consist of only distinguished query variables in G and
non-distinguished shared query variables that appears in G
as well as in any other subgoals of Q. Semantically, the
result of the partial query on G is a minimal set of tuples
that is needed from the subgoals G to compute the user
query.

The intuition behind our solution for the contained
rewriting problem is the following. Suppose O: g() :- i),
..., r{) is the user query defined on database relations.
Then there are many equivalent queries of the form Q:
g0 - pi0, ..., pu() where each p{) is the head of the
partial query on G;, G, U .. U G,, = Subgoals(Q), and for all
i #j, G; " G; = &. The contained rewriting corresponding
to each O’ can be obtained by combining the views each of
which replaces one of the partial queries so that all partial
queries in is replaced with the views. Intuitively, a
partial query p; can be replaced with a view if the view
provides necessary tuples from the set G; to compute the
answer of (. In the case of equivalent rewriting, the
necessary tuples are the same as the result of p; while in the
case of contained rewriting the necessary tuples are the
subset of the result of p;. Therefore, a view can replace a
partial query in a rewriting if a new query can be
constructed from the view such that the new query is
contained in the partial query. Views that cannot replace
any partial query are useless for rewriting. The example
below shows the observation underlying our solution for
the problem.

Example 2.2. Suppose that in addition to the query and the
views of example 2.1 we also consider the following partial
queries of O:

PIZ : (IIZ(X’Z) - pl(X,Y)a PZ(y,Z)
Py qy(z,A,w) - p3(z,' A, wW).

Note that the partial queries Py, and P, can be easily
obtained from the query Q by forcing the necessary
projections and selections on the sets of subgoals {pl, p2}
and {p3}, respectively, to compute the query. Then we
know easily that the following query Q’ is equivalent to the

query Q:

Q i (](X,W) - qu(XaZ)7 ‘73(2,,A,,W)-

Let’s consider the relationship among the partial queries
and the modified views og(¥)) and o =ar(¥2). We know
that og(V,) is contained in P;; by considering the
containment mapping A P — op(V) =
pl(x,y)—>pl(al,bl) U p2a(y,z)—p2(bl,cl) = {x—al, y—->bl,
z—>cl}. Similarly, ¢ p=-a1(¥2) is contained in P; and the
containment mapping by P; > O p—an(V2) s

-443-

p3(z, A’ w)—>p3(a3, A’ c3) = {z—a3, ‘A’=’A’, w—c3l.
On our intuition, because ¥ and V5 provide the subset of
the result of P, and P; respectively, ¥ and ¥, can replace
q12(x,z) and g3(z,’A’,w) in @’ respectively. The view
instance vi(x,z,d1) in the rewriting R can be obtained by
applying the inverse of the containment mapping /4, to the
head of cg(V)). Similarly, the view instance v,(z,A’,w) in
the rewriting by applying the inverse of the containment
mapping k5 to the head of & p—an(V2).0

3. Filter containment Problem

In this chapter, first, we define modified containment,
termed filter containment, between a partial query of the
user query and a view that will be used to determine
whether a new query can be constructed from the view such
that the new query is contained in the partial query. Next,
we describe an algorithm for testing the filter containment.
Finally, we show that if a view in a rewriting covers a
subset of query subgoals, then the view is contained in the
partial query over the subset of query subgoals.

Definition 3.1. (Filtered view) Given a view V, a filter o
on V is a set of equality predicates on the distinguished
variables of V. Then the filtered view of V under o is a
query o(¥) obtained by applying all predicates in o to the
head and body of V. [

Example 3.1. Consider a view Vj: vy(a,b,c,d) - p2(a,b),
p3(c,d,e), p4a(a,f) and a filter o = {c=b, d="A’}. We know
that o is applicable to ¥4 because all variables in o are the
distinguished variables of V,. Then the following
expression is the filtered view of V, under c.

o(Va): va(a,b,b,"A’) - p2(ab), p3(b,’A’e), p4(a,f). U

Definition 3.2. (Filter containment) Given two
conjunctive queries C, and C,, C, filter contains C, iff there
is a filter o on C, such that C; contains o(C,;). The
containment mapping from C, to ¢ (C;) is called filter
mapping. [

We regard constants in the body of the filter-contained
query C, as distinguished variables of the query during
filter containment test. Semantically, the filter containment
of C, in C, tests whether a set of tuples contained in the
result of C,; can be obtained from the result of C,. A filtered
query (view) o(C,) is a new query for obtaining the set of
tuples. We consider only optimal filter ¢ on C,. The
optimal filter on C, represents the set of query conditions of
C, that is not satisfied by C,. Intuitively, a filtered view
o(V) can be obtained from a given view V if V exports all
the variables which correspond to the head variables of a
partial query and the variables on which the set of query
conditions of a partial query that is not satisfied in V is
applied.

The following algorithm describes how to obtain a filter
mapping from given two queries. In the algorithm, the
procedure new predicate_maps(P, V, H) tries to place a
new set of predicate mappings from the body of P to the

body of ¥ set in H. There is no necessity for the predicate
mappings in H to be consistent. If it fails to locate a new set
of predicate mappings, it returns FALSE; otherwise, it
returns TRUE. The procedure applicable_filter(H, f, o, V)
try to places the union of symbol mappings induced by H
set in f'and computes a filter ¢ associated with f obtained by
the following rules: (1) For all C—V in f, where C is a
constant and V a variable, V=C is added into &, (2) For all
V, if V is mapped to multiple variables V,, .., V; by f,
V=V, 1 €1 £k, is added into ©. It returns TRUE if a
variable does not map to two different constants, a constant
doesn’t map to different constant under f and all variables
in o are one of the distinguished variables of V; otherwise,
it return FALSE. It should be obvious that the filter we
obtained is the set of qeury conditions of the partial query
that is not satisfied by the original view definition. Finally,

the algorithm returns the tupe (o(W Y)), f, H) where

o(W(Y)) is the head of filtered view by applying the
optimal filter o, f is a filter mapping, and H a set of
predicate mappings from which f is obtained, if the
mapping can be obtained; otherwise, it returns NULL.

Procedure FilteredView (P, V)

/* P and V are conjunctive queries and v(Y") is the head of
V*/
while(new_predicate_maps(P, V, H)) {
1. if not(applicable_filter(H, f, o, V)), break.
2. For each VoV, in fand V=V, in g, 1 <i <&,
remove Vo>V, fromf, 2 <i<k
3. For each C—V in fand V=C in o, replace C—»V
in f with C—»C, where C is a constant.
4. if some distinguished variable of P is not mapped

to one of variable of o(v(Y)) under f, break.
5. return (o(W(Y)), f;, H).
1

)
return NULL.

Figure I: finding a filtered instance from given a partial
query and a view.

As shown in the algorithm, a filter containment mapping is
computed from the union of induced symbol mappings
from the body of partial query to the body of view. The
algorithm checks whether the associated filter is applicable,
eliminates the source of inconsistence from the union of
induced symbol mappings, and checks the head variables of
the partial query can be mapped to only the head variables
of the view.

Theorem 3.1. Given two queries P and V, if ¥ has no
predicate repetitions in its body, the algorithm
FilteredView solves the following problem in polynomial
time: Decide if P filter contains V, and if yes, find a filtered

viewof V. [
The filter containment problem has the conventional

conjunctive query containment problem within it. So, this
problem is also NP-Completeness. The main exponential

444

factor is the number of sets of predicate mappings from the
body of a partial query to the body of a view that is to be
consicered.

In the algorithm, after a set of predicate mappings is
determined, the remainder of the algorithm is completed in
polynomial time. In the case where a view has no
duplicated predicates, the set of predicate mappings from
the body of a partial query to the body of a view is unique,
if the set exists. Because it is clear that determining the
existence of a predicate mapping and computing the
mapping may be accomplished in polynomial time,
computing the set may also be done in polynomial time,
exactly in O(nml), where n represents the number of
subgoals in the partial query, m the number of subgoals in
the view, and / the maximal size of a subgoal in the partial
query. Due to lack of space, we shall omit the proof for
soundness of the algorithm.

A contained rewriting is constructed by combining a set of
filtered views after variable renaming. Variable renaming is
done by applying the inverse of the associated filter
mapping to the head of the filtered view. The following
theorem provides the necessary condition for the existence
of a rewriting using a view.

Theorem 3.2. Given a query Q and a view V, if a contained
rewriting R using the view exists then there is a partial

query that filter contains the view. U

Outline of Proof. Suppose that there is a contained
rewriting R using the view V. Then there must exist a set of
predicate mappings H that result in a containment mapping

from Q to Exp(R). Let v(?) be an instance of V in the
rewriting R. Then there is a subset of query subgoals G

that is covered by ¥()_’). Now consider the partial query P

over G having p(X) as its head where X is a tuple of
the distinguished variables of Q in G and non-distinguished
shared query variables that appears in G as well as in any
other subgoals in Q. By showing that P is the partial query
that filter contains ¥, we will prove our theorem. To show
that the P filter contains ¥, we consider the filtered view

v()_’) - Exp(v()_’)). Let M represent a set of predicate
mappings from each subgoal of P to a subgoal of

Exp((Y)) in H. We know that each pair of predicate
mappings in M is consistent because M is a subset of H.
Now, the remainder of this proof is the head variable

mapping. If all variables in X are mapped to the

variables in Y under M, our proof is completed. First,
consider the case of distinguished variables. If a
distinguished query variable maps to non-distinguished
variable of the filtered view under M, M cannot be a subset
of H because under H a distinguished query variable must
map to a unique distinguished variable. Second, consider
the case of non-distinguished shared variables. Let us
suppose that a non-distinguished shared variable map to
non-cistinguished variable in the filtered view. Then the
join condition for the shared variable in the query cannot be
satisfied in the contained rewriting thereby the rewriting is

not contained in the query. So all head variables of P must
be mapped to the head variables of the filtered query. [J

4, Rewriting queries using a set of views

In the previous chapter, we show that the filter containment
test is used to determine whether a view can replace a
partial query in a rewriting. In this chapter we summarize
the conditions that are sufficient for the construction of
contained rewritings.

Before the construction of contained rewritings, we find all
the necessary filtered views using the filter containment
tests for each view to construct all possible contained
rewritings. We say that a view consumes a partial query or
the subset of query subgoals that determine the partial
query if a filter mapping from the partial query to the view
exists. A filtered view / of a view is minimal if there is no
filtered view I’ for the same view such that I’ consumes a
subset of the set of subgoals that is consumed by /. In our
approach, for each view, we try to find all of the minimal
filtered views. Intuitively, minimal filtered views are
sufficient to compute all possible contained rewritings
because a set of subgoals, which cannot be consumed by
one minimal filtered view, can be consumed by multiple
minimal filtered views if the union of consumed subgoals
of the filtered views is the same as the set. The following
property describes the characterizations of minimal filtered
views such that we can reduce the search space of finding
minimal filtered views using it.

Property 4.1. (1) A minimal filtered view consumes only a
single subgoal, or a set of subgoals such that some
non-distinguished shared query variables appear in only the
set. (2) The consumed subgoals of the minimal filtered

instances for a view are disjointed. [

A contained rewriting is constructed by combining a set of
filtered views after variable renaming. With a filter and a
filter mapping necessary for variable renaming, another
type of information, called guery constraint, needed to
combine filtered views correctly. Given a view and a partial
query, a query constraint C is a set of equality predicates on
the query variables. We modify the procedure

applicable_filter(o(W(Y)), f, H) in tlle procedure

FilteredView(P,V) as applicable_filter(c(\(Y)), f H,
C) to consider the query constrained C. It can be obtained
by the following rules: (1) For all V—C in f, where C is a
constant and V a variable, V=C is added into C, (2) If
multiple variables V,, ., V; are mapped to the same
variable V by f, V=V, 1 £ <k, is added into C. When
query variables map to constants or multiple query
variables map to the same view variable under f, new
equality predicates are introduced. This constraint must be
observed in combining view instances.

Before combining filtered views, we annotate each filtered
view with associated information. Given a ﬁltere_d view, the
annotated filtered view(AFV) is described as a tuple of the

form (o(W()_’)), f, H, C, G) where o(v(Y)) is the head of

-445-

the filtered view, f the associated filtered mapping, / a set
of predicate mappings from which f is obtained, C the
associated query constraint, and G the set of consumed
subgoals.

Procedure findAFVs(Q, 1)
/* Qis aquery and A is a set of views */
AFVs = {}.
For each view V'in /1
For each subgoal g in O

Add to AFVs any new AFV (o(v)7 , o H, C,
G) that can be cgnstructed p(ya(t%'le)g)rgcedure

FilteredView(G, \l;) where o(\éY)) is the minimal

filtered view of ¥ such that G contains g and the
filter mapping f exists.
Return AFVs.

Figure 2: Finding all AFVs

The algorithm for finding all necessary AFVs is shown in
Figure 2. In our algorithm, first, we try to obtain a AFV for
a set of single query subgoal. If the filter containment test
for the set is fail, then we extend the set by adding shared
variable subgoals, that is, the subgoals having shared
variables which are in the failed subgoal and test the filter
containment for the set again. We do this process until the
set is unchanged or a AFV is obtained. Property4.1 is used
during this process not to extend the testing set for
unnecessary subgoal.

Consider the application of the algorithm to our example
2.1. The AFVs that will be created are shown in Figure 3.
For V,, we first consider a set {pl(x,y)} in the query. But
we cannot find a filter mapping for that. Next, we extend
the set by adding the shared variable subgoals p2(y,z). Now,
we can find the result filter mapping {pl(x,y)—>pl(ab),
p2(y,2)—p2(b,c)} so that ¥; consumes {p1,p2}. For p2(y,2),
we need not to test filter containment, because p2 is already
covered by V. For p3(z,’A’,w), no filter mapping exists.
The numbers in f means the subgoals of a query and views
in that order. The numbers in G means the query subgoals
in that order.

oW ¥)) s e @

wi(al,cl,dl) (x—al, | {11, | O] {1,
y-bl, | 22} 25
z—cl}

(a2, A% ,c2) {z—a2, | {31} || 3}
‘A'’A’,
w—»c2}

n(03,3,7A%e3) | {zoc3, | {327 | U] {33
‘A’A’
w—e3}

Figure 3: AFVs fromed as part of our example

The following theorem summarizes the conditions that are
sufficient for the construction of contained rewritings.

Theorem 4.1. Given a query Q with q(Y) as a head and
AFVs A,' = (V,‘(Yi),f,‘, C,', G,‘), = 1, “aey l, the rewriting

A XY= [y (@Y, . f; (A Y1) is correct
if

1. Gyu ..V G,= Subgoals(Q), and

2. foreveryi#j, G;NG;=O,and

3. foreveryi#j, no conflictin C;and C;.

The proof is based on the theory of containment mapping.
Due to lack of space, we shall omit the proof of the theorem
in this paper. We use the inverse mapping of filter mapping
for variable renaming of each filtered view. The fact that
we only need to consider sets of filtered views that provide
partitions of the query subgoals drastically reduces the
search space of the algorithm.

The rewritings obtained after combining step still may
contain redundant views. However, removing them
involves the generation of new filtered views. Several
filtered views can be replaced with a new filtered view. The
following property states which filtered views can be
replaced with one new filtered view:

Property 4.2. In a rewriting, the filtered views /i, ..., J; that
are generated from same view can be replaced with a new
filtered view / if the corresponding set of predicate
mappings H,, ..., H; have view subgoals as targets that are

pairwise disjointed in the view. {

New filtered view can be obtained by using filter mapping
from the union of covered subgoals of the filtered views to
the union of view subgoals which were targets of previous
filter mappings.

5. Related works

Algorithms for rewriting query using views have been
recently used to satisfy the various needs of several
information integration systems [4, 7, 8]. Equivalent
rewriting has been studied for use in query optimization [1,
14]. The approaches for contained rewriting are the bucket
algorithm [7], using query folding [10], the inverse-rules
algorithm [3], the shared bucket algorithm, and the Minicon
algorithm [9]. The bucket algorithm is expensive because
exponential containment test is needed to test the soundness
of the rewritings. The inverse-rules algorithm works for
recursive queries but the second stage of the algorithm
where it puts together the inverse rules is almost as
expensive as the bucket algorithm’s exponential
containment test. The shared bucket algorithm and the
Minicon algorithm are similar to our algorithm in the
approach that before constructing candidate rewritings, the
role of a view in some rewriting is calculated to avoid the
exponential containment test. Their solutions, however,
were based on finding syntactic from the query variables to

the view variables while we showed that the filter
containment is the theoretical background for the contained
rewriting problem. The filter containment is testing whether
the query, whose result is contained in a partial query, can
be obtained from a given view. Then the filtered instance,
which was calculated during the test, is the query.
Rewriting queries using views with specified binding
patterns is considered in [7,8,11].

6. Conclusion

In this paper, we presented a solution for finding the
maximally contained rewriting using views that introduces
the concept of filter containment from the partial query of
the query to a view and use it to generate only sound
candidates, thereby eliminating the need for an exponential
containment test from the query to the candidate. We
believe that the filter containment supplies a firm
theoretical foundation for the contained rewriting problem.
We showed that, in a common case when predicate
repetitons are not allowed in the bodies of views, the filter
containment test is performed in polynomial-time.

Reference

17 S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K.
Shim, "Optimizing queries with materialized views", In
ICDE, 1995.

[2] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational databases. In
Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, pp. 77-90, 1977.

[310. M. Duschka and M. R. Genesereth, "Answering
recursive queries using views", In Proceedings of the
Sixteenth ACM SIGACT-SIGMOD-SIGART
Conference on Principles of Database Systems, PODS,
May 1997.

[4] O. M. Duschka and M. R. Genesereth, "Query planning
in infomaster”, In Proceedings of the ACM Symposium
on Applied Computing, 1997.

[S]Alon Y. Levy, Answering queries using views: A
survey. 1999. Manuscript available from
http://www.cs.washington.edu/homes/alon/views.ps.

[6]A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D.
Srivastava, "Answering queries using views", In PODS,
1995.

[7JA. Y. Levy, A. Rajaraman, and J. J. Ordille, "Querying
heterogeneous information sources using source
descriptions”, In VLDB, 1996.

[81 Y. Papakonstantinou, A. Gupta, and L. Haas,
"Capabilities-based query rewriting in mediator
systems", In IEEE Int. Conf. on Parallel and Distributed
Information Systems, 1996.

[9] R. Plttinger and A. Y. Levy, "A Scalable algorithm for
answering queries using views", In VLDB, 2000.

-446-

[10]X. Qian, "Query folding", In ICDE, pp 48-55, New
Orleans, LA, 1996.

[11]A. Rajaraman, Y. Sagiv, and J. D. Ullman, "Answering
queries using templates with binding patterns”, In
Proceeding of the Fourteenth ACM Symposium on
Principles of Database Systems, pp. 105-112, 1995.

[12}J. D. Ullman, Principles of Database and
Knowledge-Base Systems, Vols. I and II. Computer
Science Press, New York, 1988.

[13)J. D. Ullman, “Information integration using logical
views”, In Proc. ICDT, Delphi, Greece, pp. 19-40.

[14JH.Z. Yang and P.-A. Larson, "Query Transformation
for PSJ-queries”, the 13th VLDB Conf. 1987.

-447

