An Ontology Editor in Hozo - Treatment of '"Role" and ''Relationship"

Kouji Kozaki’, Yoshinobu Kitamura®, Mitsuru lkeda’, and Riichiro Mizoguchi

 The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567 -0047 Japan
Tel: +81-6-6879-8416, Fax: +81-6-6879-2123, E-mail: {kozaki, kita,ikeda, miz}(@ei.sanken.osaka-u.acjp

Abstract

A methodology of ontology design and a computer system
supporting ontology design are needed. Our research goals
include development of a methodology for ontology design
and a its support environment. Although several systems for
building ontologies have been implemented, they do not
consider ontological theory very much. We discuss how to
apply the "role-concept” and 'relationship” in our
environment, named Hozo, for creating and using
ontologies. We present the architecture, functionalities of
its modules, its interface and the some experiences on the
design and use of ontologies.

Keywords:

ontology, ontology development system, role, relationship

Introduction

Recently, an ontology is expected to contribute to
knowledge sharing and reuse[Mizoguchi 98]. It is, however,
difficult to develop a well-organized ontology because the
principles of ontology design are not clear enough.
Therefore, a methodology for ontology design and a
computer system supporting ontology design are needed.
Our research goals are development of a methodology for
ontology design and supporting environment based on the
methodology.

Building an ontology requires a clear understanding
of what can be concepts with what relations to others.
An ontology focuses on “concepts” themselves rather
than “vocabulary”, and its design is not the problem
of how to represent but that of identifying the
inherent conceptual structure. For example, “a
bicycle wheel” is recognized as different concepts
such as “a rear wheel” and “a driving wheel”
according to the context. To take another example,

we found human operators use different terms to
denote the same device depending on the context in a

plant operation system. Furthermore, “a man” can be
called “a husband”, “a father” and “an employee”.
The difference between these concepts is
discriminated based on the ontological theory of
role-concept{Mizoguchi 99]. Similar problems have

-256-

been discussed by some researchers{Guarino 98, Sowa 95].

Although several systems for building ontologies have been
developed to date, they were not based on enough
consideration of an ontological theory. We argue that a
fundamental consideration of these ontological theories is
needed to develop an environment for developing an
ontology. Most of the previous ontologies, which are
represented in frame-based languages, don’t clearly deal
with such concepts that need deep ontological investigation.
Therefore we begin with a fundamental consideration of an
ontological theory. We discuss mainly “role concept” and
“relationship”, and consider how these ontologically
important concepts should be treated in our environment.
On the basis of the consideration we have designed and
have developed an environment for building and using
ontologies, named “Hozo”. This paper presents an outline
of the functionality of Hozo. We focus on how it treats
relations and roles on the basis of fundamental
consideration.

The next section outlines the architecture of Hozo. Section
3 discusses a role-concept in pari-of relation and the
treatment of the role-concept in Hozo. In section 4 we
introduce a wholeness' concept and a relation concept.
Section 5 presents the implementation of Hozo and
examples of its use. Next we discuss the related work
following by conclusions and some future work.

ontologies and models

Fig.1. The architecture of Hozo

An environment for building ontologies

Hozo

We have developed an environment, named “Hozo"", for
building ontologies based on fundamental ontological
theories. “Hozo” is composed of “Ontology Editor”,
“Onto-Studio” and “Ontology Server”(Fig.1).

The ontology editor provides users with a graphical
interface, through which they can browse and modify
ontologies by simple mouse operations. This system
manages properties between concepts in the is-a hierarchy.
The Onto-Studio is based on a method of building
ontologies, named AFM (Activity-First Method)
[Mizoguchi 95], and it helps users design an ontology from
technical documents. The ontology server manages the built
ontologies and models.

Because the architecture is implemented in Java and the
ontology editor is an applet, it can work as a client through
Internet. Hozo manages ontologies and models considering
who is its developer. For each ontologies in Hozo, its
author can define and modify it, and the other users can
only read and copy it. It lets share ontologies among users
without explicit version control.

Models are built by choosing and instantiating concepts in
the ontology and by connecting the instances. Hozo also
checks the consistency of the model using the axioms
defined in the ontology. The ontology and the resulting
model are available in different formats (Lisp, Text,
XML/DTD) that make it portable and reusable.

Ontologies which Hozo builds

An ontology is composed of concepts and relations which
are necessary for representing the world of interest. Is-a
relation is the most basic relation. It represents a super-sub
concept relation. A sub-concept inherits everything from its
super-concept.

An ontology reflects what exists out there in the world of
interest or represents what we should think exists there. As
result, an ontology provides us concepts and relationships
which are used as building blocks of the model. It also
provides guidelines for building models and constraints
which the models should satisfy.

The definition of a concept is composed of the following
items:

label : It denotes its name.
super: The name of a super-concept.

axiom: Constraints which have to be satisfied by all of
instances of the concept.

*We coined this term to represent our original idea of “the whole”.

"“Ho” is a Japanese word and means unchanged truth,
laws or rules in Japanese, and we represent
“ontologies™ by the word. “Zo” means to build in
Japanese.

-257-

def: Informal definition in natural language.
part-concept: Parts which constitute the concept.
attribute: Attributes of the concept.

A relation between a part-concept and a whole-concept is
represented by a “part-of” relation. That between an
attribute and its concept is represented by an "attribute-of”
relation. The axiom contains constraints which
part-concepts or attributes should satisfy, and relations
among the part-concepts. For example, these are constraints
on the part-concept such as “any teachers must have a
teaching certificate” in a “school”, and “the size of wheels
are from 10 inch to 30 inch” in a “bicycle”. Another
example is a constraint on the relation such as there must be
a connection relation between a wheel and a frame in a
“bicycle”. The language for representing these axioms is
under development.

Ontology Editor

The ontology editor provides users with a graphical
interface, through which they can browse and modify
ontologies by simple mouse operations. This interface
consists of the following four parts (Fig.2):

1. Is-a hierarchy browser displays the ontology in a
hierarchical structure according to only is-a relations
between concepts.

2. Edit panel is composed of a browsing panel and a
definition panel. The former displays the concept
graphically, and the latter allows users define a
selected concept in the is-a hierarchy browser.

3. Menu bar is used for selecting tools

4. Tool bar is used for selecting commands

Tool Bar & Menu Bar

Jroptwhesl)
= whael

Ei a1
¢

tegiEs

\

Is-a hierarchy
browser

Fig.2. A snapshot of Ontology Editor

The Is-a hierarchy browser .

displays the ontology in a =% relation human o

hierarchical structure according to -breathing with luny nherited -breathing with lungg

only is-a relations between concepts. the -active m— -ACtIVE

Using the is-a hierarchy browser, properties ofj - i“]‘e_"i: -

users can sel.ect concepts and modify the concept | -VIVIparous inherited Y VIPATous #l.lév;l.y.&e.f;ned

the is-a relations. It does not treat the -walking with two feeti§ s naeeee

multiple inheritance because we newly defined

consider that most of the uses of the gelected _

multiple inheritance in knowledge super-concept human mammal animal
representation are inappropriate from

the ontological point of view. This displayed | (walking with two feet (9)breathing with fungs (3)breathing
issue is discussed in section 3. properties (1)viviparous (Dactive

The Edit panel displays the
definition of the concept that is
selected in the is-a hierarchy browser, and allows users to
edit it. It is composed of a browsing panel and a definition
panel (Fig.2). The browsing panel graphically displays
part-concepts that constitute the selected concept. The
definition panel allows users to read/write the definition of
the concept selected in the browsing panel.

The browsing panel has two display modes: tree mode and
network mode. In the tree mode, the concept is displayed in
a hierarchical structure using part-of relations between part
concepts. In the network mode, all relations - including a
user defined ones - are shown in a network structure. In the
both modes, slots of the concept, usually representing its
attributes, can be shown by request. A number of mouse
operations for manipulating trees and networks are also
available.

The definition panel displays a detailed definition of the
concept selected in the browsing panel. Users can read the
definition of the concepts and define them. The items for
editing are described in section 2-2.

The elements of definitions can be categorized into two
types.
1. Newly defined definitions in the designated concept.

2. Inherited definitions from its super-concepts.

The list of super-concepts is shown by request. When users
select a concept from the list, the definition panel displays
the slot definition inherited from the selected concept.
Moreover, the properties of the concept displayed in the
definition panel are classified into three categories.

(1) Newly added properties in the concepts.

(2) Properties which are defined by overriding the
definitions inherited from its super-concepts.

(3) Properties which are overridden in its sub-concepts

The panel offers color and font facilities for distinguishing
them. Fig.3 shows an example of these categories for a
concept "human”.

Ontology Server

The ontology server provides several functions the ontology
editor uses in the course of ontology development. It has 26

-258-

Fig.3. An example of properties displayed in the definition panel

functions, necessary for ontology definition for example
“define-concept”, “add-slot”, “get-super-class” and so on.
During the building processes the ontology server also
checks the consistency of the model using the axioms
defined in the ontology. When there is any violation of the
axiom the system sends error-message to the user. The
ontologies and the model which are built based on them are
stored in the Ontology Server and accessible from other
systems by the following three ways.

1. Common access through network: Users can access
tke ontologies and models through Internet using the
ontology editor,

2. Translation into different formats: The ontology
server can translate the ontologies and models into
different formats (Lisp, Text and XML/DTD) that
make them portable and reusable.

3. Access using API: The operational functions which
the ontology server provides are opened to the public
as APL Using the API other systems can use all the
functionalities of the ontology server.

A role concept in a part-of relation

Basic concept, role concept and role holder

A part-of relation represents a whole-part relation between
the whole-concept and the part-concept which constitutes
the whole-concept. For example, <“a wheel” part-of “a
bicycle”™ represents a relation between a bicycle and a
wheel which is a component of the bicycle. The major
semantics of the part-of relation is that it specifies that
when an instance of a whole-concept is created, instances
of its all part-concepts are also created.

The current version of Hozo has only a kind of part-of
relation which is transitive. But in the next version we have
planed to consider several kinds of part-of such as
component-part-of which is the most common part-of
relation, material-part-of, and so on [Mizoguchi 99]. Some
of the part-of relations are not transitive.

Let us consider “a front wheel”, in order to investigate the
part-of relation. One may describe <“a front wheel” part-of

@

“a bicycle”™ also. A question now arises: how are “a

a part-role concept a basic concept arole holder basic concept
(a teacher role) (a human) (a teacher) part-role concept (class copstraint)
[R1] name [B1] name [R1] name teacher role
[R2-1] age(>22) [B1] age- [R2-1]age(>22)
[B2] height [B2] height
[B2] weight [B2] weight
[R2-2] subjects [R2-2] subjects
[R2-2] the length of [R2-2] the length of
employment employment
[R2-2] certificate [R2-2] certificate

Fig.4. An example of part-concept definition

wheel” and “a front wheel” different from each other?

“A front wheel” is not a mere label on “a wheel” because it
has more information than “a wheel”. Then, does <“front
wheel” is-a “wheel”> hold? Some may answer “yes”. It is,
however, inappropriate from the ontological point of view.

John Sowa introduces the firstness and the secondness of
concepts[Sowa 95]. The former is roughly defined as a
concept which can be defined without mentioning other
concepts. Examples include ion, a man, a tree, etc. The
latter is roughly defined as a concept which cannot be
defined without mentioning other concepts. Examples
include wife, husband, student, child, etc. Concepts of the
secondness type except artifacts are called role-concepts.
Based on his theory, we identified three categories for a
concept. That is, a basic concept, a role-concept, and a role
holder.

A role-concept represents a role which a thing plays in a
specific context and it is defined with other concepts. On
the other hand, a basic concept does not need other
concepts for being defined. An entity of the basic concept
that plays a role such as husband role or wife role is called a
role holder. There are various role-concepts such as roles
dependent on the relation and those dependent on a task, etc.
In this paper, we concentrate on role-concepts, which
appear in the context of the part-of relation.

A part-concept in the part-of relation is composed of three
conceptual elements.

Role-concept: A concept representing a role dependent
on the whole-concept.

Class constraint: A constraint on the class to which the
instance playing the role belongs.

Role holder: An entity of a basic concept which is
holding the role.

The class constraint refers to the basic concept which is
defined elsewhere. Then an instance that satisfies the class
constraint plays the role and becomes the role holder. For
example in “a bicycle”, its wheel plays the role as a front
wheel (“a front wheel role”) or a role that steers its body (“a
steering role™), which is defined as a role-concept. A wheel
that plays these roles is called “a front wheel” and “a
steering wheel”, respectively, which are role holders.

-259-

Fig.5. The relationship among definitions

The relationship between these concepts

A role-concept inherits some properties from a basic
concept as its class constraint. Therefore properties of a
basic concept are divided into two categories, in the context
of a part-role concept definition, described as follows.

BI: properties which are inherited by the role-concept.
B2: properties which are not inherited by the role-concept.

The properties of a pari-role concept are divided into the
following categories: '

RI: properties which are inherited from the basic concept.

R2: properties which are added in the role concept. They
are divided into two.

R2-1: added constraints on properties which are
inherited from the basic concept.

R2-2: new properties which are not defined in the
basic concept.

Contents of BI and R1 are absolutely equal. R2-1 overrides
parts of RI (BI). The definition of a role holder is a sum of
that of a part-role concept (R1 and R2) and that of a basic
concept (B1 and B2), and it is the sum of R1 (BI), R2 and
B2.

For example, Fig.4 shows definitions of a role-concept
“teacher role”, a basic concept “human” and a role holder
“teacher”. In this example, the definition of “teacher role”
has “name” as RI inherited from the basic concept
“human”. The definition of the teacher role includes
constraints on “age”(R2-I) such as “any teacher must be
over twenty two years old”. It represents a constraint on the
basic concept that can play the “teacher role”. In addition to
these, the teacher role has some additional attributes (R2-2)
such as “the subjects that the teacher teaches”, “the length
of employment” and “certificate”. Although in this example
we simply define the concept using only attributes, the
definition of other definition elements such as part-concepts
and axioms are defined in the same manner.

Fig.5 shows relationships among the definitions of three
concepts of our example. In this figure the top circles
represent the three concepts, and the bottom circles
represent sets of their properties. This figure tells us

properties of the role holder “teacher” includes whole
properties of the basic concept “human”.

Inheritance between the role holder and the role-concept is
formally equal as the inheritance relation of an is-a relation.
As mentioned in section 3.1, however, a role holder is not a
sub-concept of a basic concept, and it is such a concept that
a basic concept plays the role. So, the inheritance is
different from a multiple inheritance of is-a relation from
ontological point of view. We will discuss the difference in
the following paragraph.

There have been a lot of discussions about multiple
inheritance. In software engineering, they are focused on
formal issue such as how it is represented and how it is
implemented in the software. However from ontological
viewpoint our approach focuses on not its “representation”
but its “content”, that is, how we should understand the
target world. It is important to note the difference between
“representation” and “content”.

Let us consider a typical example of multiple inheritance.
“Mr. Smith” is an instance of “a human” and that of “a
teacher” too. Using multiple inheritance of is-a relation, it
can be represent that “Mr. Smith” is an instance of the class
“a human who is a teacher” which is a sub-concept of both
“a human” and “a teacher”.

This representation, however, causes some problems in the
following cases.

e Even if “Mr. Smith” retires and stop to be an
instance of “a teacher”, he will have been an
instance of “a human”.

e When “Mr. Smith” dies and stops to be an instance
of “a human”, the instance of “a teacher” will
disappear as well.

In these cases, the semantics of is-a or instance-of relation
is inconsistent. On the other hand if the semantics of both
relation is strictly unified, the representation is
ontologically inappropriate.

This problem can be represented as follows by using the
three conceptual elements, that is, a role-concept, a class
constraint, and a role holder, which are mentioned in
section 3.1.

e “Mr. Smith” is an instance of a basic concept
“human”.

e And it plays a role concept “teacher role”, and then
it becomes a role holder “teacher”.

This example shows that the confusion of the “relation
between a role concept and a role holder” with the is-a
relation causes the problem. Our environment makes it
possible to distinguish these relations explicitly. Guarino
discusses similar problems as is-a overloading and
categorizes them into five types[Guarino 98j. This
discussion is so important in the fundamental study of
ontology that we will investigate it in further detail.

-260-

Treatment of the role concept

In the browsing panel a part-of relation and a part-role
concept. are represented by such a manner that is shown in
Fig.6a. A diagram of a part-concept is composed of three
parts. Each of them represents 1) a role-concept, 2) a class
constraint, and 3) a role holder. A symbol besides a link
connecting a whole-concept and a part-concept denotes
kinds of relation (“p/0” denotes part-of relation, and “a/o”
denotes attribute-of) and a numeral represents the number
of part-concepts(or attributes). Fig.6b shows a wheel, which
is referred in the class constraint, plays “a front wheel role”,
and the wheel becomes a role holder “a front wheel”.

When users select a rectangle in the browsing panel, the
definition pane! allows them to read and define concepts
they designate. In order to treat part-concepts, we prepare
two kinds of definition panels for basic concepts and part
concepts. The panel for basic concepts displays contents
discussed in section 2-3. That for part concepts displays
definition of part-concepts, shown in Fig.7. At the top of
the panel, the label of a role concept, a class constraint and
a role holder are shown. At the bottom of this panel,
definitions of these three concepts are shown on a tabbed
panel. Users can switch the following three views to read
and edit the definition.

Part view: The panel displays definition of the
role-concept. 1t allows users to add a new definition
ard constraints on properties inherited from a basic
concept.

Basic view: The panel displays definition of a basic
concept referred to in the class constraint. It allows
users only to select inheritable properties to the role
concept.

Full view: The panel displays the definition of the role
holder. It allows users only to read the definitions.

The users’ editing process thus consists of two steps, to
select inheritable properties in the basic view and to edit
properties in the part view. These views are also switched
when users click rectangles represented in the browsing
panel corresponding to these three views.

___________ part-conce_pt

! 1)role-concept

1! :
J/Lﬂ"\ 3)role holder :l 2) ¢lass constraint E

a) a legend

front wheel role

front wheel Hw’heel |

b) an example of “bicycle”

Fig.6. A legend of part-of relation

{ifront wheel role
i
~Class Constraint

“wheel

3
* tnified Concept
.
:

210l
spokerole spoke

rim role rim

tire role tire
light light

Fig.7. The definition panel for part-concepts

Relation concept

Relation concept and wholeness concept

There are two ways of conceptualizing a thing. Consider a
“brothers” and a “brotherhood”. “The Smith brothers” is a
conceptualization as a concept, on the other hand
“brotherhood between Bob and Tom” is conceptualized as a
relation. On the basis of the observations that most of the
things are composed of parts and that those parts are
connected by a specific relation to form the whole, we
introduced “wholeness concept” and “relation concept”.
The former is a conceptualization of the whole and the
latter is that of the relation. In the above example, the
“brothers” is a wholeness concept and the “brotherhood” is
a relation concept.

A wholeness concept contains part-concepts, which
compose the whole-concept, as its parts. And the relation
between the wholeness concept and the part-concept is a
part-of relation. So the three concepts, that is, a part-role
concept, a class constraint, and role holder discussed in
section 3, appear. On the other hand, a relation concept
does not contain participating concepts. And the relation
between the relation concept and the participating concept
is not a part-of but a participant-in relation. A participating
concept in the participate-in relation is composed of three
conceptual elements, that are a role-concept, a class
constraint, and a role holder, in the same way as a part
concept in pari-of relation. Relation concepts also have is-a
relations and super/sub concepts.

Because a wholeness concept and a relation concept are
different conceptualizations derived from the same thing,
they correspond to each other. The role-concepts in a
wholeness concept and those in a relation concept are the
same. Theoretically, every thing that is a composite of parts
can be conceptualized in both perspectives as a wholeness
concept and a relation concept. In fact, there are three types
of concepts according to the strength of relationship

-261 -

perspectives:

Wholeness concept perspective is stronger: e.g. artifacts
like a bike, a desk, etc.

While a bike is composed of wheels, handlebars, a saddle,
etc., it is rare that the relationship of them is conceptualized,
say, these parts are in “a bike relation (a relation among
parts composing a bike)”.

Both perspectives are natural: brother / brotherhood,
married couple / marital relationship, parent and child /
parent-child relationship, etc.’

Relation concept perspective is stronger: front-rear
relation, human relation, etc.

While front-rear relation is a common concept, a wholeness
concept “things in a front-rear relation” is rarely
conceptualized.

A use for relation concepts in an axiom

As mentioned in section 2.2, the axiom of concepts contains
constraints which part- concepts or attributes should satisfy,
and relations among part-concepts. A relation concept is
used to represent the constraint on relations such that there
must be a relation between instances of part-concepts in the
model. Then some part-concepts play multiple roles, a role
in the wholeness concept and that in the relation concept.

For example, let us consider the wholeness concept “a
family”. “A family” is represented as a wholeness concept
which is composed of the part-concepts such as “a man”
playing “a father role”, “a woman” playing “a mother role”,
and “a human” playing “a child role”. A user defines an
axiom that there must be “a marital relationship” between
the father and the mother in the family. Then the man
playing the father role in this family plays the “husband
role” also. Furthermore, when “a parent-child relationship”
between the man and the child is described, this man plays
the “parent role” in the parent-child relationship as well.

Treatment of relation concepts and wholeness concepts

On the basis of the consideration in the previous section,
the environment for ontology development must manage
the correspondence between a wholeness concept and a
relation concept. The ontology editor displays wholeness
concepts and relation concepts on separate panels. In Fig.8,
the left panel shows the wholeness concepts and the right
panel shows the relation concepts. We outline how these
two concepts are defined in our editor.

1. A user describes “a married couple (fufu in
Japanese)” as a wholeness concept. Then he/she
defines a husband role and a wife role.

- 2. The user designates the wholeness concept
representing a married couple in the left panel, and
selects a command to define a relation concept

" All concepts are valid in Japanese

corresponding to the

_lidescription of wholeness concepts

A description of relation concepts

wholeness concept.

111

3. A relation concept “a
marital relationship” is
defined
semi-automatically. At
the same time a husband
role and a wife role are
defined by sharing the

L
“wife role

:]M

rt—of
—_husband role
:{man

(2) a user defines
a relation concept
corresponding to the

wholeness concept

<J

definitions of the
husband role and the
wife role which is
defined in 1.

4. The user describes a
wholeness concept
“family” which consists
of a father, a mother, |

and children. C 1

‘child role

5. Next the user selects

he user descnbes v

(6) an axiom that there ||
must be this relation

(5) a user adds
a relation between
a father and a mothe

'h
o riend man
and rq

|rl(nen .m £

part-concepts

representing a father and

a mother in the family.

Then he/she chooses a

marital relationship as a kind of relation in the tool
bar, and selects a command to add a relation
between them.

6. An axiom that there must be a marital relationship
between a father and a mother in a family is thus
added in the definition of a family.

7. Then according to the definition of a marital
relationship a man playing the father role plays the
husband role, and a woman playing the mother role
plays the wife role as well.

8. The user edits definitions of each role-concepts in
the definition panel.

As discussed in section 4.1 role-concepts in a wholeness
concept “married couple” and those in a relation concept
“marital relationship” are derived from the same entity.
Therefore Hozo keeps the “husband role” in a married
couple and the “husband role” in a marital relationship to
have the same definition. And the “husband role” is
referred to in the “family” (in above 7), which has the same
definition as the “husband role” shown above.

When users edit definition of a concept having multiple
roles like husband and father, in the definition panel they
select a role-concept to edit from a list of the role-concepts
which the basic concept can play.

Implementation and application

The current version of the ontology editor for Hozo has
been implemented in Java (JDK1.3) and been used for four
years not only by our lab members but also by some
researchers outside. The following are some example

-262-

Between thiem

Fig.8. A description of a relational concepts

ontologies developed thus far:

1. A plant ontology in the interface system for
oil-refinery plant operation[Mizoguchi 00]

2. Task ontology of learning support systems[Jin 99]
An ontology of learning goal in CSCL[Inaba 00]

4. An integrated ontology for defining collaborative
learning experiences[Barros 01]

Here we give more detail the plant ontology. The plant
model contains a remarkable fact that multiple names are
used to denote the same entity. Let us take an example
shown in Fig.9 in which two controllers exist: Level
controller (LC29) and flow controller (FC29). Both
controllers use the same control valve as an actuator. It is a
typical example of cascaded control. LC29 takes care of the
liquid level of the overhead drum which contains reflux
(Naphtha). And FC29 is in charge of controlling the flow of
Naphtha coming out of the overhead drum . The control
valve is called by different name depending on which
controller the operator focuses on.

In Hozo, this example is represented that the basic concept
“control valve” plays multiple roles depending on the
context. Fig.10 shows a snapshot of the plant ontology
definition about Controller. “Flow Controller” and “Level
Controller” inherit control function from its super concept
“Controller” and have “Valve” as a class constraint “Target
Component of Operation” slot, which is a specialization of
“Actuator”. In “Flow Controller” the valve plays
“Flow-Control role” which depends on “Flow-Control
relation”, and it becomes the role-holder “Flow-Control
Valve”. And in “Level Controller” the valve plays
“Level-Control role” which depends on “Level-Control
relation”, and it becomes the role-holder “Level-Control
Valve”. “Flow-Control relation” and “Level-Control
relation” are relational concepts obtained by

b

e . Concep

m q omponent of Oper: .- b rget Component of Operation
e I | Constraint
| PGS
N ibute of Opeseran | 'O¥-Control relation
W o B
VI3, e I | 77 A
Overhead drum Altribute of Ogeration arp g2 ea T AANe Tiouiorrion]
alg 1 Armount of Flow
Attribute
[atrute]

Value of Attribute

et Variabie
20 I [Value of Atribute

» etVa
o™] [remountorFiow

a/o 1

z

Manipylate Variabie

Detector
Lot] [Fowmerr]

Overhead drum level .
Control valve
Naphtha Extraction Flow

-m L wval Contariter
d Afiribute Name pio (ideLPart ol Operatio
Atiribute Name Level-Control Value
Voa =7 Obio — evel-Control role
Object Name o1 Altribute of Operatierr® LevetControl relation
Detecto o
Uquid-Level
el] Proress varatl
a/o1_ S
a0 1 et Variablg .
Detecto

Fig.9. Cascaded control of LC and FC

conceptualizing the functions of component as a relation
function. In the instance model which is built based on this
ontology, an instance of “Flow Controller”(FC29) and an
instance of “Level Controller’(LC29) share the same valve.
The valve plays multiple roles, and it is recognized as a
different role holders according to the context. This
example shows Hozo can treat the change of recognitions
by introducing the role-handling technique based on the
ontological theory.

Related Work

Our view of an ontology is based mainly on its use in
building a well-founded model, that is, we think
meta-model functionality of an ontology is the most
important. This contrasts well with that of Guarino’s idea of
top-level ontology design[Guarino 98].

Hozo shares an idea of ODE of METHONTOLOGY [Lopez
99] in that it generates machine code of the ontology
defined in a more informal way.

Several ontology development environments have been
already developed[Farquhar 96, Swartout 96,
Mahalingam 99, Domingue 98]. Most of the tools are based
on a frame-based knowledge representation language with
an additional functionality for writing axioms. Hozo is
similar to them in that sense, but is different from them in
some respects:

1. Clear discrimination among a role-concept (husband
role), a role-holder (husband) and a basic concept
(man) is done to treat “Role” properly.

Management of the correspondence between a
wholeness concept and a relation concept.

It does not allow multiple inheritance of is-a relation
because most of the use of multiple inheritance in
knowledge representation are inappropriate from
ontological point of view.

(%)

Fig.10. A snapshot of the plant ontology definition

Conclusion and Future work

We discussed an environment for ontology development,
Hozo, concentrating mainly on how its ontology editor
treats role-concepts and wholeness/relation concepts. Hozo
is designed based on a fundamental consideration of an
ontological theory. It was informally evaluated by domain
experts and they gave favorable comments. They found
utility of Hozo in making their knowledge explicit and in
operationalizing it and would like to use it in the daily
activity. Hozo has been extensively used in many projects
to develop various ontologies.

We have identified some room to improve Hozo through its
extensive use. The first topic is about effective guidelines
for ontology development that is badly needed by
developers. Because a lot of the existing guidelines are
those similar to Software development guidelines, we need
neater one, that is, one which can help users distinguish
between classes and roles, identify appropriate relations and
build a proper abstraction hierarchy of classes. Although
this topic is important, it is out of the scope of this paper.
Other topics include basic functions which support neat
representation of an ontology. The following is the
summary of the extension:

Sophisticated display of part-of relations and its
editing The current Hozo has only one part-of
relation which is transitive, but the next version will
introduce several part-of relations some of which are
not transitive.

Ontological organization of various role-concepts

Augmentation of the axiom definition and the
language

-263-

References

[Barros 01] Barros, B., Mizoguchi, R., and Verdejo, F.: A
Platform for Collaboration Analysis in CSCL: An
ontological approach, Proceedings of AIEDOI, San
Antonio, Texas, May 19-23 2001

[Domingue 98] Domingue, J.: Tadzebao and WebOnto:
Discussing, Browsing, and Editing Ontologies on the
Web, Proceedings of the 11th Banff Knowledge
Acquisition Workshop., 1998

[Farquhar 96] Farquhar, A., Fikes, R. and Rice, J.: The
Ontolingua Server: a Tool for Collaborative Ontology
Construction, Proceedings of the 10th Banff Knowledge
Acquisition Workshop, 1996

[Guarino 98] Guarino, N.: Some Ontological Principles for
Designing Upper Level Lexical Resources. Proc. of the
First International Conference on Lexical Resources and
Evaluation, Granada, Spain, 28-30, May 1998,

{Inaba 00] Inaba, A., Thepchai, S., Ikeda, M., Mizoguchi,
R., and Toyoda, J.: An overview of "Learning Goal
Ontology", Proc. of ECAI2000 Workshop on Analysis
and Modeling of Collaborative Learning Interactions,
pp.23-30, Berlin, Germany, 2000

[Jin 99] Jin, L., Chen, W., Hayashi, Y., Ikeda, M., Riichiro
Mizoguchi, R., Takaoka, Y., Ohta, M.:An
Ontology-Aware Authoring Tool - Functionalstructure
and guidance generation -, Proc. of AIED'99

[Lopez 99] Lopez, M.F., Gomez-Perex, A. et al., Building a
chemical ontology using Methontology and the ontology
design environment, IEEE Intelligent Systems, Vol.14,
No.1, pp.37-46, 1999.

[Mahalingam 99] Mahalingam, K. and Huhns, M.: Java
Ontology Editor (JOE) TUTORIAL,
"http://www.engr.sc.edu/research/CIT/demos/java/joe/",
1999

[Mizoguchi 95] Mizoguchi, R., Tkeda, M., Seta, K. and
Vanwelkenhuysen, J.: Ontology for Modeling the World
from Problem Solving Perspectives, Proc. of IJCAI-95
Workshop on Basic Ontological Issues in Knowledge
Sharing, pp. 1-12, 1995.

[Mizoguchi 98] Mizoguchi, R.: A Step towards Ontological
Engineering, National Conference on Al of JSAI, AI-L13,
1998,
http://www.ei.sanken.osaka-u.ac.jp/english/step-onteng.h
tml.

[Mizoguchi 99] Mizoguchi, R. et al.: Foundation of
ontological engineering — An ontological theory of
semantic links, classes, relations and roles —, J. of JSAI,
Vol.14, No.6, pp.1019-1032, 1999(in Japanese).

[Mizoguchi 00} Mizoguchi, R., Kozaki, K., Sano, T., and
Kitamura, Y.: Construction and Deployment of a Plant
Ontology, 12th International Conference on Knowledge
Engineering and Knowledge Management, Juan-les-Pins,
French Riviera, October, 2000.

_264-

[Sowa 95] John F. Sowa: Top-level ontological categories,
International Journal of Human and Computer Studies,
43, pp.669-685, 1995

[Swartout 96] Swartout, B., Patil, R., Knight, K. and Russ,
T.: Toward Distributed Use of Large-Scale Ontologies,
Proceedings of the 10th Banff Knowledge Acquisition
Workshop, 1996Engelmore, R., and Morgan, A. eds.
1986. Blackboard Systems. Reading, Mass.:
Addison-Wesley.

