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ABSTRACT

A novel approach based on WaveARX neural network
observer is proposed for the fault detect of a class of
nonlinear systems which consist of known linear part and
unknown nonlinear part. A linear observer is first designed,
then a nonlinear compensation term in the nonlinear
observer is estimated by using a deconvolution method.
The WaveARX network is used to model the obtained
compensation term. At last, the residual for fault detection
is generated based on the analysis of the upper bound
approximate error. Simulation results have shown the
feasibility and effectiveness of the method.

1 INTRODUCTION

Over the past two decades, much attention has been paid to
the problem of fault detection in dynamic systems. This is
due to both a higher demand for reliability and safety of
industrial processes, and to economic and environmental
constraint. When a fault occurs, it may affect the efficiency
of the process, and if it is not located at an early stage it
could lead to a catastrophic scenario including injuries to
personnel. Many methods have therefore been developed,
the observer-based approaches have been proven to be
capable of successfully detecting certain types of system
faults.

It is well known that the core element of model-based
fault detection in control systems is the generation of
residual signals which act as indicators of faults. The
residual signals are generated using estimates of and a
comparison with real measured quantities. For the design
of residual generators, various approaches have been
discussed in the literature.Various mathematical-model-
based algorithms have been achieved for linear systems.
However, there are few fruitful results for nonlinear
dynamic systems!'. The first reason is that it is very
difficult to develop an exact mathematical-model for a
nonlinear dynamic system in practice. The second is that

there are few methods to construct a state estimator (filter)
for a nonlinear dynamic system, so the residuals for fault
detection can not be calculated.

Extended Kalman Filter (EKF) which is used widely
for state estimation relies on linearized state and output
equations to estimate the states. Therefore it can lead to
divergence when modeling error exists in underlying
nonlinear dynamic systems'”. Wen Chen®) presented a
variable structure adaptive observer approach based on
known bound of the nonlinear part, which is not always
achieved for real plant.

Neural network has proven to be an universal
approximator. It can successfully approximate nonlinear
function. Only few papers have applied neural network
approach to the state estimation of nonlinear systems.

In this paper, a new method of fault dection is
proposed for a class of nonlinear system which consists of
known linear part and unknown nonlinear part. A linear
observer is first designed, then a nonlinear compensation
term in the nonlinear observer is estimated by using a
deconvolution method. And this obtained compensation
term is modeled by a WaveARX neural network. At last,
the residuals is generated for fault detection based on the
analysis of the upper bound approximated error. A
simulation example is given to show the effectiveness of
this proposed approach.

2 WAVEARX NEURAL NETWORK OBSERVER

Consider a class of nonlinear systems described by:
x(k+1) = Ax(k) + f (x(k)) M
y(k) = Cx(k) @)
where: A is the linear part of this system and it is supposed
known.. f(x)is the unknown nonlinear function. (4,C)is
observable.

A method for fault detection based on WaveARX
neural network observer is proposed following.
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2.1 Nonlinear Observer Design

Firstly, a linear observer is first designed based on the
known linear part of system (1) and (2).

X, (k+1) = A X, (k) + Ky(k) 3)
Ay =A-KC “
where K is the gain of observer and it may be designed

by some methods!**! which are already exist. 5&1 is the

state of the linear observer.
Nonlinear observer is defined as following:

x(k+1) = A, x(k)+ Ky(k) + S(k) )

J(k) = Cx(k) ®
where S(k) is the compensation term according to the
nonlinear part f(x). It is relative to the initialization
condition of the observer.

2.2 Nonlinear Compensation Term Estimation

In this step, we estimate the unknown nonlinear
compensation term S(k) using a deconvolution procedure.

Because there is a convolution relation between S(k)and
the y which is the output of the nonlinear observer, if

make y equal to the y(k), then S(k) will be achieved.

From equation (5) and (6), following equation can be
gotten.

k) = Ci(k)
= AAxk-D+Kk-D+Sk-D)=--=
k

CAXO)+ ) CAKyk-i)+ )
i=]

) =
D CAISk-i)
i=1
y(k) = y(k) - y(k)
k
= ' (R)-) CAFIS(k~i) ®)

i=1
where

k
Y (k) = y(k)~CALZO)~ ) CAT Ky(k—)  (9)
i=1
and x(0) can be selected arbitrarily, but the equation
Cx(0) = y(0) = 3(0) should be satisfied, thus y' (k) is
known.
Let $(k)=0 and C,=CAy", k=12, - ,M+1 ,
from equation (8), we can get

C,S(0) =y (1),

CiSM+C,8(0) =y (2), (10)

CiS(M)+++-+Cpy 1 S(0) = y* (M +1)
When rank(C)=n and pzn , where p is the
dimension of output, » is the dimension of state vector.
Thus S(%)can be calculated as following:

SO =C*y" (1)

e s & . (11
Sy =C* [y (k+1)= Y Ciag iSO
i=0
C*=(CC)"'C,k=1,--,M ,C is the transposed matrix
of C .
Thus if the initialization condition x(0) is certain, then
S(k) can be calculated.

2.3 Modeling nonlinear compensation term using
WaveARX neural network

In this paper, we will adopt WaveARX neural network to
model the nonlinear compensation term. Zhao Zhong!®
presented that WaveARX neural network has the ability of
approximation. Here S(k) is supposed to be a _scalar
function (while S(k)is a vector function, its components

can be treated similarly). A WaveARX neural network is
used to model the compensation term obtained in step 2.

For arbitrary function f(x):R"” — R, it is can be

approximated by a multi-input single output (MISO)
WaveARX model. The architecture of the WaveARX
neural network can be written as,

N
fX) =Y Cru(Ng Ua'x=bme)+c"x+co  (12)
I.m

where C; , (f)are the network coefficients, when choose
dilating scale a, translating scale & properly, g can form

an affine wavelet frame, e € R” which all elements are one
and ce R", ¢ and ¢, are the coefficients of linear ARX

model and can be determined using linear modeling
techniques, N is the total number of wavelet functions
selected.

Let the input of the nonlinear part be the input and
obtained compensation term be the output of the
WaveARX neural network. Here the input variable of

network is supposed to x(k) and the output variable is

; (x(k)) .-Thus, the neural network observer can be written
as
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x(k+1)= 4 x(k)+ Ky(k)+ FG) (13)
y(k) = Cx(k) (14)

3 FAULT DETECTION BASED ON WAVEARX
NEURAL NETWORKS OBSERVER

After the nonlinear observer is constructed, it can be used
for fault detection. At this time, it is not used as an
observer, but a normal model for the system with no faults.
The fault detection scheme is shown in Figure 1.

u(k) y(k)
——p| system

O USRI SEPURI R

' K H
N - 5(6) E
: 7! C :
: Ao E
E R nonlinear E
' S(k) observer !
i WaveARX E
3 ‘1 :

Figure 1: Fault detection scheme

The key problem of model-based fault detection is
how to generate the residuals. The residuals are referred to
the errors of the functions formed by the observed data and
their estimation values. When there is no fault, the
residuals are affected by state estimation errors and noises,
they are usually small while the state estimation errors are
small enough. When there is a fault, the residuals appear
large biases. So the fault can be detected by observing the
changes of residuals. Tt means that this model can must
accurately predict the output of the system. The
convergence of the proposed nonlinear observer is
demonstrated following.

Define the error of system output estimation as

r(k+1) = y(k +1) - y(k + 1) = Ce(k)

(15)

and the maximum error and the Lipschitz continuity of the
approximated function as

{n OO IS

|/ G- £ (<) + e <@l el
6)

where e(k) = x(k) - x(k)

A

Sk = [ (x(k)+CT x(k)+c,

N
@)=Y Cru(Ng (la™'x(k) - bmel)
i,m

When the process and measurement noises are small,
the estimation of e, and a can be obtained from the
training data. Then from equation (1) and (13), we can get

e(k+1)=x(k+1)—x(k +1)

= A e(k) +1f(x)- f(2)] a7
= A ek) + O (k) + (k)

where AF(K) = fTx(k)] - fTx(k) - (k)] ,
£(k) = fIx(k)] - FTZ(0)]

Ay is a Hurwitz matrix, so for an any given positive
definite real symmetric matrix Q , there is a positive
definite real symmetric matrix P , which satisfies the
equation

A, PA,-P=-Q (18)
Consider the Lyapunov function V(k) = e (k)Pe(k), and

at first suppose there is no error of the approximation
network, that is to say £(k) = 0. Then from equation (17),

following equations can be gotten.
Vik+1)= e'Sk +D)Pe(k+1) =Ae'(k)A(')APAOe(k) +
247 (K)PA (k) + Af (K)PAS (k)
AV(k)=V(k+D-V (k)= —Ae' (k)Qe(k) +
201 (k)PA je(k)+ Af "(k)PAS (k)

According to the definitions in equation (16), we can
obtain following equation

AV (k) < (~Agmin + 20 pmaxOmax + @ Apma) €O | 21)
where A, i, is the minimum eigenvalue of O, 4, s is the

19

(20)

maximum eigenvalue of P, o, is the maximum singular

value of Ay . 1 = A min + 20 max Ommax + @ Apmax <0, then

AV (k) < 0, which means e(k) >0, ast—>».
In practice, there always exists error of network, that is,
for all &, | (k)] is not equal to zero all the time. Thus we

can analyze the upper bound approximate error. From
equation (17), we have

ll eCk +1) li<ll Age(E) || +1i A+ k)
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S (Omax ta) L e(k) || + | (k)|
(22)
If (omax + @) <1,equation (21) will be stable. So when £ is
enough large, we have

e(k+1) ~e(k) 23)
Substituting equation (22) into (21), we get:
k
ety s —2R__ @
1= (Cmax +Q)

4)

Then the residuals for fault detection can be designed as

e

hrolsl Cll —L—=5 (25)

1- (o-max + (Z)
When a fault is exist, equation (25) cann’t be satisfied.
Therefore, S is the threshold of residuals and the change
of r(k) can be used for fault detection.

4 TLLUSTRATIVE EXAMPLE

In this section , the proposed approach is applied to an

example of nonlinear system to show its effect validity.

Consider the motion equation of a single-link robot

constrained in vertical plane!®. This motion can be

expressed in joint space as
MG+0.5mglsing=u
y=q

where g represents the generalized coordinate (joint

(26)

position), uis the applied joint torques, M is the moment
of inertia, g is the constant of gravity, m and / represent
the quality and the length of the arm respectively. Here the
value of these parameters are given in table 1 and all of
them are Sl units .

Tablel: Robot parameters

m ) M g
1 1 0.5 9.8

Suppose x, =g,x, =q , u=sin20¢+cos20¢ , then

equation (26) can be expressed as

X 0 1}x 0] . .
= +|  i(sin20r + cos 20t —o0.5mglsinx )/ M
X, 0 0jx, 1 !

y=x
27N
First , we design the linear observer which has the
same form as

(28)

5=3
then discretize it as a sampling interval 0.05 seconds, and
add a nonlinear compensation term S(k) to form a

nonlinear observer. The designed discrete nonlinear
observer has the following form

(k)] [09512 0 %k
%, (k+1)| [-0.0476 09512 % (k)
0.0488 0
+ y(k)+

0 S(k)
where the nonlinear compensation term S(k)is determined

using decovolution method , modeled by a WaveARX
network. Based on the knowledge of system’s nonlinearity

the input of network is taken as fcl , 1e., S(k) is

29

approximated by network output SA'(JAcI (k)) which is a

function of J?I (k) . After the network is successfully

trained, the nonlinear observer is design. the maximum
error and the Lipschitz constant are estimated as
e, = 1.1709, @ =0.1202 . Figure 2 shows the comparison

of the real motion with no fault and the output of the
observer designed above.
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Figure 2: Comparison of motion estimation
and actual output
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Figure 3: Residual generated in a fault

Figure 3 shows the residual when a fault is present. It
can be seen that the residual has changed a lot after the
fault. Thus, the fault can be detected easily by using
appropriate threshold.

5 CONCLUTION

This paper reported on the use of WaveARX Neural
network to build a nonlinear observer that is used to detect
faults in nonlinear systems. The proposed approach can be
applied to a class of nonlinear systems described in (1) and
(2). The linear part of the system is assumed known
however the nonlinear part can be unknown and there is no
restriction on its type. The analysis based on Lyapunov
function in part 3 of this paper guarantees the convergence
of this method. Simulation results showed that the
proposed system can effectively detect faults.
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