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ABSTRACT

The resonators made of piezoelectric crystals such as
a quartz crystal are widely used. Their frequency-
temperature characteristics are of primary importance
for their applications to the frequency control devices.
The characteristics estimation is useful for determining
their design parameters. In the present paper, several
types of resonators are numerically analyzed. The nu-
merical solutions are made using 3-D Finite Element
Modeling, and the results are compared with the theo-
retical values whenever they are available. To demon-
strate the validity of the present numerical approach,
the application is made to the analysis of the plates
with some well-established cutting angles. For the res-
onator stable with temperature change, the cutting an-
gle is important in which the temperature coefficient
of the first order is chosen to be zero. The rotated Y-
cut plates in thickness-shear mode are considered. The
equivalent circuit representation is often used for de-
scribing the characteristics at the electrical terminals
which enables the circuit analysis including the effect
of temperature change by using the circuit simulators.
The equivalent circuit parameters are obtained by fit-
ting the admittance-frequency curve from the finite el-
ement analysis.

1 INTRODUCTION

The resonators made of piezoelectric crystals are widely
used for the frequency control devices. In such applica-
tions, the frequency-temperature characteristics of the
resonators are primarily important. In order to control
the frequency-temperature characteristics, various cut-
ting angles are devised for the crystal. Proper cutting
angles have historically been developed experimentally
for some simple modes of vibration. The temperature
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effect however depends on the shape of the resonators,
which should be examined by the numerical method
such as the finite element modeling.

In this paper, the frequency-temperature characteris-
tics of a thickness-shear mode resonator made of quartz
crystal are examined by using three-dimensional finite
element modeling. The equivalent circuit parameters
are also determined for the mode of interest. Thus the
resonator can easily be incorporated in the electric cir-
cuit analysis.

It should be noted that the effect of the tempera-
ture change in the resonant frequencies for the crystal
plate resonators was considered by means of the finite
element method as early as in 1981[1], where a square
crystal plate in plane motion was analysed in the two-
dimensional modelling.

2 MODELING

Three-dimensional finite element modeling is used for
numerical simulations. The formulation is made for the
isoparametric cubic elements with eight nodes. The
discretized equation of vibration including piezoelectric
effect is given by
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(1)
where [K], [M], [G] and [T] are stiffness, mass, capac-
itance and electro-mechanical coupling matrices, {u},
{#}, {f} and {q} are displacement, electric potential,
force and electric charge vectors. @, is the mechanical
quality factor of the plate.
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2.1 Temperature Dependency

The piezoelectric equations of e form are expressed as

(T} = [®1{S} - [e] {E} (2)
(D} = [} {S} + [5] {E} (3)

{T}, {D}, {S}, {E}, [cF], [e] and [e] are stress,
electric flux, strain, electric field, stiffness, electro-
mechanical coupling constants and permittivity respec-
tively. The effect of the temperature change on the
parameters is the result of the changes of some physi-
cal constants due to the temperature change. Though
the values of [cF], [e] and [¢°] may change with the
temperature, only [cf] among others is chosen to be
of interest. In addition, the structural deformation and
the change of mass density, caused by the thermal ex-
pansion [L], are included. Each component of both
[¢F] and [L] is expanded in the third order polyno-
mials, which are expressed as follows

X = Xo + oy At + ﬂXAt2 + 'yXAt3 (4)

where o refers to the value at the reference tempera-
ture, and a,, By and 7y, are the first, second and third
order temperature constants, which are generally mea-
sured with respect to the main crystal coordinate axes.

Since thermal expansion in quartz crystal is
anisotropic, resultant deformation depends on the cut-
ting angle. Thus the thermal expansion matrix [L] as
well as other physical constants must be converted into
the orientation so that

L) = (L))" (5)

where [L'] and [L] are the converted and original ther-
mal expansion matrix and [[] is the rotation matrix,
which consists of directional cosines. Note that con-
verted thermal expansion matrix is not diagonal while
the original thermal expansion matrix is diagonal.

Mass density p also changes by thermal expansion.
It is simply expressed using the reciprocal of volume
expansion

3
p=po/ TTL; (6)
i=1
where pg is mass density at the reference temperature.
L;; is coefficients of the thermal expansion defined by

Li=—% (7)
Tio

Table 1: Material constants of quartz
P11 P12 cF13 P14 P33
0.86474 0.0699 0.1191 -0.1791 1.072

cP44 P66 es1/e0  €53/€0
0.5794  0.3988 [x10''N/m?]  4.43 4.63

€11 €25
0.171  0.0403 [C/m?]

p
2650 [kg/m°]

Table 2: Temperature coefficients

x Px Tx
[x1076] | [x1079] | [x10712%]

cF11 | —485 ~107 -70
cF12 | —3000 | —3050 | -1260
cF13 | -550 —1150 —750
14 101 —48 —590
cE33 | —160 —275 —250
cFaa | 177 -216 —216
c®66 178 118 21
L1 13.71 6.5 -1.9
Lss 7.48 2.9 -15

where z;0 and z; are the lengths in ¢ direction at the
reference temperature and after the expansion, respec-
tively.

3 NUMERICAL DEMONSTRATION

A thickness-shear mode resonator made of rotated Y-
cut quartz crystal plate is solved for the temperature
characteristics. The material constants of the quartz
and their temperature coefficients used for the analysis
are shown in Tables 1 and 2, which are taken from the
reference, R.Bechmann et al [2].

3.1 Comparison with the Analytical Solutions
for Infinite Plate Model

The analytical value of the resonant frequency f. of the
fundamental thickness-shear mode, for an infinite plate,

is given by
1 1CE
=— 8
frmg ®)
where y and p are the plate thickness and mass density
respectively. 0{356' is a component of the stiffness of the
rotated Y-cut plate, depending on cutting angle, which
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is
!
ety = 2ycl +12,c8) + 2100152 cF (9)

where lp2 and l3; are the components of the rotation
matrix [{], which appear in equation(5). They are ex-
pressed for the rotation angle 8 about z axis,

oo = 6
{22 = cos (10)
lp3 = sin@

Thickness y of the plate under the thermal deformation
is given as follows

| 1513
v 15 L5 +15, L, (1
where yjp is the thickness at the reference temperature.

The configuration and finite element model with el-
ement division for the infinite plate model is shown in
Fig. 1. Proper boundary conditions make this model
equivalent to an infinite plate.

The frequency-temperature curve for the 35.1°-
rotated Y-cut plate is shown in Fig. 2. FEM(a) is the
case in which the deformation by thermal expansion de-
pends on equation(5). FEM(b) is the case in which the
deformation by thermal expansion is restricted only to
the direction of thickness. This means that the thick-
ness is determined by equation(11), same value used
for the analytical solution. The values of the analytical
and FEM(a) solution agree each other. However, the
value of the FEM(b) solution is slightly shifted. This
is because as the temperature increses from the refer-
ence temperature, the thermal expansion may cause the
shear deformation as well as volume deformation, which
may effect on the vibrational mode.
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Fig. 1: The finite element model with element division
for an infinite plate model in thickness shear mode
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Fig. 2: Frequency-temperature dependency of a 35.1°-
rotated Y-cut infinite plate model by FEM and analyt-
ical results
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Fig. 3: A quartz crystal plate, configuration and finite
element division

3.2 Three-Dimensional Model for a plate of fi-
nite dimension

The plate, its configuration and the finite element di-
vision, is shown in Fig. 3. The fundamental thickness-
shear mode is shown in Fig. 4 with the electric potential
distribution. The vibration is trapped in the electroded
region.

The frequency-temperature characteristics are exam-
ined for various cutting angles from 34.9° to 35.2°,
which are shown in Fig. 5 including the solution for the
infinite plate model. It is found that the freqency of the
three-dimensional model tends to be lower than that of
the infinite plate model at the reference temperature.
The first order frequency-temperature coefficient is re-
sponsible for that. The three-dimensional model shows
that the cutting angle with which the first order co-
efficient becomes zero is smaller than that of AT-cut
plate(d = 35.25°).

Fig. 6 shows the first, second and third order
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frequency-temperature coefficients, which are deter-
mined by fitting the equation(4) to the frequency-
temperature curve. cy is zero for the cutting angle
about 34.7°, which is smaller by 0.55° than that of the
AT-cut infinite plate. At that cutting angle, the second
and the third order temperature coefficients 3y and vy
are 1.5 x 102 and 115.6 x 10712 respectively, whose
values roughly agree with the known values 1.2 x 10~°
and 100 x 10712, given in reference [3].

3.3 Equivalent Circuit Representation

The characteristics of piezoelectric resonators at their
electrical terminals are often represented by the equiv-
alent circuit as shown in Fig. 7. The damped capaci-
tance Cyp is directly solved by static finite element anal-
ysis, while Ly, C; and R, are obtained by fitting the
admittance-frequency curve of the circuit to that of the
finite element solution, as shown in Fig. 8.

The equivalent circuit parameters and their temper-
ature coefficients of the resonator made of 34.7° rotated
Y-cut plate are shown in Table 3. Note that the first
and the second order coefficients of L; and C, are com-
plementary.

Table 3: Equivalent circuit parameters and their tem-
perature coefficients (6 = 34.7°)

ax Bx  %x

[x1076) [x107°%] [x10~'?]
Col125 x 10-B[F] 98 44 44
Ly| 023[H] 69 -32 6.5
Ci|12x10°5[F] 69 32 233
R 136[0) 69 -28 128

4 CONCLUSION

The frequency-temperature characteristics of a quartz
crystal plate resonator are solved by three-dimensional
finite element modeling.

The finite element solutions for the infinite plate
model are compared with the analytical solutions of
the one-dimensional model. When the anisotropic ther-
mal deformation is included, the numerical solutions are
slightly different from the analytical solution. When the
plate thickness is only assumed to change due to ther-
mal expansion, the FEM solution agrees with the ana-
lytical solution. This means that the one-dimensional
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Fig. 4: Deformation and electric potential distribution
for the fundamental thickness-shear mode, obtained by
3-D FEM
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Fig. 5: Frequency-temperature dependency of a rotated
Y-cut plate (3-D FEM)
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Fig. 6: Changes of resonant frequency and its temper-
ature coefficients against the cutting angle
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Fig. 7: Equivalent circuit of the resonator
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Fig. 8: Admittance-frequency curve

analysis is not proper for the temperature characteris-
tics evaluation. The effect of the plate dimension must
be included.

The frequency-temperature characteristics are then
solved for the three-dimensional model. The resonant
frequency and the equivalent circuit parameters are ob-
tained by fitting the admittance-frequency curve of the
circuit to the finite element solutions. Their tempera-
ture coefficients are also obtained. They may now be
incorporated with the electronic circuit, suitable for the
analysis by a circuit simulator such as SPICE.
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