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ABSTRACT

In various applications of queueing systems, admission
control is often employed. It is known that the threshold-
type of admission control is optimal in many practical
applications despite its simplicity. However, determining
the optimal threshold value is hard in general, because an-
alytical expressions for the stationary queue length distri-
butions are not easily available in most queueing systems.
In this paper, to quickly determine the optimal threshold
value under threshold-type admission control, we develop
a concurrent simulation technique, which can save large
amount of CPU time required in simulation, compared to
the standard simulation procedure.

1 INTRODUCTION

In various applications of queueing systems, admission
control which decides whether arriving customers should
be accepted in the queue or be rejected is often employed.
One of the reasons necessitating admission control is that
we usually have to ensure that certain acceptable perfor-
mance levels are achieved [1]. Typically we wish to keep
the average system time of customers as low as possi-
ble, while maintaining the acceptance rate of customers
as much as possible. Controlling the incoming customer
flow is an obvious way to accomplish this goal.

The most widely used admission policy is a simple
threshold-type policy which admits all customers as long
as the queue length is less than or equal to a threshold
K* and rejects them otherwise. It is known that despite
its simplicity, this type of admission control is optimal
in many practical applications including communication
networks, computer systems and manufacturing systems
[12]. The implementation of the threshold-type policy is

simple and all it requires is a simple counter of customers.
However, determining the optimal threshold K* in a (fi-
nite) set K = {Ko, K1,...,Kpm} is hard in general, since
analytical expressions for the stationary queue length dis-
tributions are not easily available in most queueing sys-
tems. Thus, in many cases, we resort to simulation to de-
termine the optimal threshold K*. We then need to per-
form simulations for each queue under a threshold value
K; for i =0,..., M to determine the optimal threshold
K*, and this requires considerably large amount of CPU
time in general.

In this paper, to quickly find the optimal thresh-
old value under the threshold-type admission control,
we develop a concurrent simulation technique which
can estimate the optimal threshold K* from simula-
tion only for the queue under the threshold value K =
max{Ko, K1,...,Km}. It is thus expected that the uti-
lization of the concurrent simulation technique enables
us to save large amount of CPU time compared to the
standard brute-force simulation procedure.

The most widely known concurrent estimation tech-
nique is a technique based on the sample path construc-
tion such as Augmented System Analysis (ASA) {3, 4, 5]
and Time Warping Algorithm (TWA) [2] (also see [1] for
reference). The technique constructs the corresponding
sample paths which are associated with systems under
threshold values Ko, K1, ..., K from an observation of a
particular system under a threshold value K. As a result,
from simulation run only for the system under a threshold
value K, the technique can concurrently estimate per-
formance measures in the systems under threshold val-
ues Ko, K1,...,Kn. The technique based on the sample
path construction is, indeed, a powerful tool for concur-
rent simulation, but there exist some important classes of
queueing systems where the technique is not easily appli-
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cable. For example, although queueing systems with feed-
back controlled and correlated input streams frequently
arise in various applications such as communication sys-
tems, the technique is not applicable to the concurrent
performance estimation of such queueing systems [9, 8].
Recently, to overcome the difficulty, Ishizaki et al. [9, 8]
have proposed a technique which uses a proportional re-
lation [7, 8, 9, 10, 11] holding between the stationary
distributions of queueing systems under different buffer
capacity (or threshold value). The basic idea that a pro-
portional relation is used for concurrent estimation may
date back to [6]. In [6], Gong and Gong have exhibited the
idea and they have applied a technique using a propor-
tional relation to the concurrent performance estimation
of M/GI/1/K queues with respect to buffer capacity (or
threshold value).

In this study, we consider a discrete-time single-server
queueing system under the threshold-type admission con-
trol and we introduce a cost structure where rejecting
a customer incurs a cost r and maintaining the system
for all admitted customers incurs a cost b per unit time
for each admitted customer in queue or in service. We
then develop a concurrent simulation technique to find
the optimal threshold K* such that the expected cost per
unit time minimizes. In particular, we develop a concur-
rent simulation technique using the proportional relation.
To investigate the usefulness of the concurrent simulation
technique, we also provide a simulation result. In the
simulation result, we compare CPU time required by the
concurrent simulation procedure developed in this study
with that required by the standard simulation procedure.

The remainder of the paper is organized as follows.
Section 2 describes a queueing model and cost function
considered in this paper. Also, in Section 2, a problem
to find the optimal threshold value is formulated for the
queueing model and cost function. In Section 3, we ex-
hibit a proportional relation holding between the station-
ary queue length distributions in the queueing systems
with different threshold values. Using the proportional
relation, we can concurrently estimate the expected costs
in the queueing systems with different threshold values
through simulation only for a particular queueing system.
We consider estimators for the expected cost and provide
the estimators for the concurrent and standard simula-

tions in Section 4. To investigate the usefulness of the
concurrent simulation technique, we provide a simulation
result in Section 5. Conclusion is drawn in Section 6.

2 QUEUEING MODEL

In this section, we describe a queueing model and cost
function considered in the paper. A problem to find the
optimal threshold value under the threshold-type admis-
sion control is then formulated for the queueing model
and cost function.

In this paper, we consider a queueing model studied in
[11]. By setting {5,} in (2.1) (and (2.2)) appropriately,
the queueing model can represent various discrete-time
single-server queueing system such as queues with geo-
metrically and interrupted service, queues with preemp-
tive priority, queues with periodic service assignment and
SO on. -

The queueing model is a discrete-time queueing system
where time is divided into unit-time intervals called slots.
The queueing system consists of a single server and a
buffer, and threshold-type admission control is employed
in the queueing system. The threshold value is denoted
by K (0 < K < o). The system is fed by two arrival
streams: A controlled stream and uncontrolled one. The
uncontrolled stream is described as a sequence {A,}nez
on Z,, where A, denotes the batch size (the number of
customers) arriving from the uncontrolled stream in the
nth slot.
subject to a feedback control based on the queue length

On the other hand, the controlled stream is

information, i.e., the batch size B, (€ Z4) arriving from
the controlled stream in the nth slot is probabilistically
determined by the queue length in the (n — 1)st slot.
The potential services of customers are governed by a
0-1 sequence {0 }nez, and the server is available in the
nth slot if §, = 1 and not available otherwise. Let X,
be the random variable on {0,..., K} representing the
queue length (including one in service if any) in the nth
slot. The system admits all customers as long as the
queue length (including one in service if any) is less than
or equal to the threshold K and rejects them otherwise.
The dynamics of the stochastic sequence { X, }nez is then
represented by the following recursion:

KXnyr = min[(Xn - 6n)+ + Anya + Bnya, K], (2.1)
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where £+ = max(z,0). From (2.1), the number of re-
jected customers in the (n + 1)st slot is given by

Zpy1 = [(Xn - n)+ + An41+ Bpy1 — K]+ (2.2)

Throughout the paper, we impose the following as-
sumption:
Assumption 1

(1) {An}nez and {8,}nez are jointly stationary.

(ii) Given the value of X,, Bpy1 is conditionally
independent of all other random variables, and
P(Bpy:1 = k| X,, = j) is invariant in n € Z for
all j =0,...,K and k € Zy4. 45, P(B1 = k|
Xo=j)=1foreach j=0,...,K.

(i) {Xn}nez is stationary and ergodic.

Next, we consider queueing systems which are iden-
tical to one considered so far in this section but their
threshold values are Ky, K1, ..., K, where without loss
of generality, we assume that 0 < Kpyy < Kpyp < -+ <
K, < K¢ < +00. In what follows, we refer to the system
with threshold value K; as K;-system for i =0,1,..., M
and, to emphasize the threshold value, we put the su-
perscript (K;) on the quantities associated with the K;-
system.

We now make the following assumption, which is a
key assumption for a proportional relation, which will be
established in the next section.

Assumption 2

(i) The stationary sequences {(A%K‘),(Sﬁ,K"))}nez are
stochastically identical for ¢ = 0,1,...,M, and
{(Affi‘l),é,(lK‘))}nEz (i = 0,1,..., M) is regenera-
tive in the sense that, if {A%Y) = 0,65 = 1}

n+1
occurs, then {(Al(f{),él(K‘))}l>n is independent of

{457, 6" N hign-
(i) P(XEY) =0)>0fori=0,1,..., M.

Assumption 2(i) says that the lengths of periods dur-
ing which the event {Agj_‘l)
independent, and geometrically distributed. In case where
{Aﬁ,K‘)}nez and {6$,K‘)}nez are mutually independent,
the uncontrolled stream regenerates when A%K") = 0,
which means that the lengths of off-periods in the un-

controlled stream (i.e. the periods of {A%K") = 0}) are

= 0,64 = 1} continues are

independent and geometrically distributed but it allows
enough generality of the on-periods (i.e. the periods of
{AS,K") = 1}). In our model, we can consider the case
where the state space {0, ..., K;} is divided into some dis-
joint subsets and the stationary and ergodic queue length
process satisfying Assumption 2(ii) is a.s. in one of such
subsets and never enters to any other subsets. Assump-
tion 2(ii) ensures that the queue length processes in K;-
systems (z = 0,1,..., M) belong to a common subset.

Finally, we formulate a problem to find the optimal
threshold value K*. To establish a cost structure for the
problem, we assume that rejecting a customer incurs a
cost » and maintaining the system for all admitted cus-
tomers incurs a cost b per unit time for each admitted
customer in queue or in service. The expected cost per
unit time in K;-system is then expressed as

VD = pE[x ] + rE[Z{59). (2.3)
Under this formulation, the problem is to find ¢ (i =
0,..., M) such that the expected cost V{¥:) per unit time
minimizes.

3 PRELIMINARY RESULT

In this section, we establish a proportional relation hold-
ing between the stationary queue length distributions in
the queueing systems with different threshold values. The
utilization of the proportional relation will enable us to
concurrently estimate the expected costs in the queueing
systems with different threshold values through simula-
tion only for a particular queueing system. An estimator
using the proportional relation will be provided in the
next section.

The following theorem shows that a proportional re-
lation holds between the stationary queue length distri-
butions in the queueing systems with different threshold
values. More precisely, the stationary queue length distri-
bution in K;-system (¢ = 0,..., M) is expressed as that
in Kyp-system multiplied by a constant and the constant
is also expressed in terms of the stationary queue length
distribution of Ky-system.

Theorem 1 Under Assumptions 1 and 2, for i =
0,...,M we have

P(X) = j) = (KIP(x D) = j),
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and

P(X{) = K;) =1 - SIP(™ < K - 1),
where {9 is expressed as

KD = 1/P(XS) < K, | 6§59 = 1,40 = 0)

if P(‘s(()KO) = 1,A§K°’ = 0) > 0 and otherwise (%) = 1.
Proof: See [11]. -

The following proposition is a direct conclusion of The-
orem 1, and it is immediately obtained from the result
shown in Section 4 in [11].

Proposition 1 Under Assumptions 1 and 2, for i =
0,...,M,

. : K
V(K«) =} [Kl —_ C(K')E[(Kz —_ X(g O))I{X(()KD)SKi‘l}]]

K ; K
+"‘[ - E[(S(() 0)] + C(K')E[‘S(() 0)1{)(5"0):0}]

+E[4{)]

K;
+[l — )E[I{XéKO)SK;—l}]]

E[B" | X5 = K1

+c KOE[BKO) (3.1)

{Xé"‘”sm—l}]]’
where 1 denotes the index function and ¢(¥+) is given in
Theorem 1.

Note that the expression (3.1) for the expected cost
VK in K;-system (i = 1,..., M) allows us to evaluate
the expected cost in K;-system from an observation of Kp-
system. This makes it possible to concurrently estimate
the expected cost in each Kj-system (i = 0,1,...,M)
through simulation for Ko-system (without simulation for
each K;-system). As a result, the concurrent simulation
technique using (3.1) will save large amount of simulation
time to find the optimal threshold value K*, compared
to the standard brute-force simulation procedure, which
performs simulation for each K;-system (: = 0,1,...,M).

4 ESTIMATORS

In this section, we consider estimators for the expected
cost V&4 per unit time in K;-system. We hereafter as-
sume that the quantities E[6{*’], E[A{*®)] and E[B{ |
X§¥) = K] are given. Also, we assume that 5((,K°) and

1 (X{K0) gy BT€ independent.
Kol

First, for the concurrent simulation, we consider an
estimator which can concurrently estimate V(%) for
i = 0,...,M from simulation only for Kg-system. Let
VEDI(N) (i = 0,..., M) denote the estimator for V(X
where N denotes the simulation time. The estimator
V () (N) for the concurrent simulation is easily obtained

from (3.1) and it is given by
VEOWN) = b[K; = eI (V)]
+r[BIS)(~ 1+ &F2 ) fFI ()
+E[A{F]

+[1- W A ()]

BB | X5 = K]

A(K; F(K:
o0 9. )
where &) (N) is given by

N-1

é(Kl)(N) = [Z I{Ai}i(;):o"sslxwzl}jl
n=0
N-1 -
. [; 1{X.(.KO)SK«',A&’.(,,%):U,&f.KO):l}]

. N-1 .
if 3.0 l{xf.KO’gK],Aﬁ’i‘;’:o,&ﬁ""’:ﬂ > 0 and otherwise

&XI(N) = 1, and fFOW), W), FEIN) and
féK")(N) is given by

N-1
SOK 1
M) = 3 e XNy

n=0
N1
(K
) = N Z 1y txo0)_gy
n=0

N-1
(K. 1
f2( )(N): N Z 1{XS.K0)SK,-—1}’
n=0
2(K:) 1\~ ko)
f3 ) (N) = N Z Bn+01 l{X,(,KO)SK‘-—l}’
n=0
respectively.

Finally, we provide an estimator for the standard sim-
ulation procedure. Let VIX)(N) (i = 0,..., M) denote
the estimator for V(5 where N denotes the simulation
time. The estimator V{(X:)(N) is simply given by

N-1
VIENN) = % > bx KD 4z (4.2)
n=0
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5 SIMULATION RESULT

In this section, we provide a simulation result to examine
the usefulness of the concurrent simulation technique. In
the simulation result, we compare the efficacy of the con-
current simulation technique with that of the standard
simulation procedure in determining the optimal thresh-
old value of the admission control.

The following queueing model is considered in the sim-
ulation result. The uncontrolled stream is generated by
20 uncontrolled sources and each source generates one
customer with probability 0.01 in each slot. A%K°) then
has the binomial distribution:

P(A0) = j) = (2]0> (0.01)7(0.90)2°4,

In the simulation result, for simplicity, we assume that
there is no arrival from the controlled stream, i.e.,
B = 0 with probability one for n = 1,2,.... The ser-
vice discipline is work-conserving, i.e., the server serves
exactly one unit of work whenever there exists a cus-
tomer in the system. The service time of a customer has
the geometric distribution with mean 4. In this setting,
6 isiid. and P((SS,K‘) = 1) with probability 0.25 and
P(&,(,K") = () with probability 0.75. We set b = 1.0 and
7 = 200 in the cost function (2.3). Also, we set M = 4,
Ko =24, K; =20, K> =16, K3 = 12 and K4 = 8. In the
standard simulation, using the estimator given in (4.2),
we perform simulation for the queueing systems with the
threshold value of 24, 20, 16, 12 and 8. On the other hand,
in the concurrent simulation, using the estimator given in
(4.1), we perform simulation only for the queueing system
with the threshold value of 24. In both simulations, we
get one sample of V(X)) (N) and V&) (N) during 4.0x 10*
busy cycles with initial condition XéK") =0. .

Table 1: Simulation results
standard concurrent

3.710 £ 312 x 107%  3.714+4.89 x 10~°
12 3465£3.13x107° 3.468+4.75x 107
16 3.482+324x107° 3.485+4.62x 10~
20 3.527+351x10~° 3.527+4.55 x 103
24 3551+384x10"° 3.555+4.56 x 10—3

K;
8

Table 1 shows the estimations of V(¥:) (i = 0,1, 2, 3,4)
with 90% confidential interval, which are obtained
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Concurrent -------
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Number of sets of semples

Figure 1: Comparison of total required CPU time

through the standard and concurrent simulation proce-
dures. 1000 samples are used in both estimations. From
Table 1, we see that the optimal threshold value is 12 in
this case. Also, we observe that under the condition that
the number of the samples is fixed, the standard simula-
tion procedure provides the estimates with lower variance
than the concurrent simulation procedure. However, re-
call here that the standard simulation procedure will re-
quire longer total CPU time to get one set of the samples
for queueing systems with the threshold value of 24, 20,
16, 12 and 8 than the concurrent simulation procedure,
because the standard simulation procedure needs to per-
form simulation for the 5 queueing systems while the con-
current simulation procedure needs to perform simulation
only for the queueing system with the threshold value of
24.

Next, we will compare the total required CPU times to
get the set of the samples in both simulation simulation
procedures. Fig. 1 depicts the total required CPU time in
simulation as a function of the number of the sets of the
samples. In Fig. 1, we observe that the CPU time which
is required to get one set of the samples by the concurrent
simulation is smaller than that by the standard simula-
tion. In fact, the former is 1.378(sec) while the latter is
5.612(sec), and the latter is 4.07 times as large as the for-
mer (although 4.07 is slightly smaller than the value of
M +1=25).

Next, under the condition that the total required CPU
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Figure 2: Variance of estimates for Ko-system
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Figure 3: Variance of estimates for K;-system

time is fixed, we will compare the variance of each esti-
mate obtained through the concurrent simulation proce-
dure with that obtained through the standard simulation
procedure. Figs. 2, 3, 4, 5 and 6 display the variance of es-
timates for the queueing systems with the threshold value
of 24, 20, 16, 12 and 8 as a function of the total required
CPU time within a range from 500(sec) to 5000(sec). In
these figures, we observe that under the condition that
the total required CPU time is fixed, the concurrent sim-
ulation procedure provides estimates with lower variance
than the standard simulation procedure. We then see that
the utilization of the concurrent simulation technique en-

1.00e-04

Standard ————
Concurront --->---

1.00e-05 T T g

Variance of estimates

1.00e-06

N
1.000+03
Requirad CPU time (sec)

Figure 4: Variance of estimates for K»-system

1.00e-04
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Concurrent ---»---

1.00e-05

Variance of estmates

1.00e0-06 -
1.000+03

Requirod CPU time (sec)

Figure 5: Variance of estimates for K3-system

ables us to save large amount of CPU time compared to
the standard simulation procedure.

6 CONCLUSION

In this paper, to quickly determine the optimal thresh-
old value under threshold-type admission control, we
have developed a concurrent simulation technique which
can find the optimal threshold K* from simulation
only for the queue under the threshold value K =
max{Kp, K1,...,Km}. The concurrent simulation tech-
nique is based on the proportional relation holding be-
tween the stationary queue length distributions in queue-
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Figure 6: Variance of estimates for K4-system

ing systems with different threshold values. The sim-
ulation result exhibits that in determining the optimal
threshold value, the concurrent simulation technique can
save large amount of CPU time compared to the standard
simulation procedure. It is expected that the concurrent
simulation technique is useful, especially, when the value

of M is large.
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