Simulation Analysis for Verifying an Implementation Method of Higher-performed
Packet Routing

Jaewoo Park, Seong-Yong Lim and Kyou Ho Lee

Router Technology Dept., ETRI, 161 Gajong-dong, Yusong-Gu,Deajon ,305-350, Korea
Tel: 042-860-5723, Fax: 042-860-5213
E-mail: {parkjw,seylim and kyou}@etri.re.kr

As inter-network traffics grows rapidly, the router systems as a network component becomes to be
capable of not only wire-speed packet processing but also plentiful programmability for quality services.
A network processor technology is widely used to achieve such capabilities in the high-end router.

Although providing two such capabilities, the network processor can’t support a deep packet
processing at nominal wire-speed. Considering QoS may result in performance degradation of processing
packet. In order to achieve faster processing, one chipset of network processor is occasionally not enough.
Using more than one urges to consider a problem that is, for instance, an out-of-order delivery of packets.
This problem can be serious in some applications such as voice over IP and video services, which assume
that packets arrive in order. It is required to develop an effective packet processing mechanism for using
more than one network processors in parallel in one linecard unit of the router system. Simulation analysis
is also needed for verifying the mechanism.

We propose the packet processing mechanism consisting of more than two NPs in parallel. In this
mechanism, we use a load-balancing algorithm that distributes the packet traffic load evenly and keeps the
sequence, and then verify the algorithm with simulation analysis. As a simulation tool, we use
DEVSim++, which is a DEVS formalism-based hierarchical discrete-event simulation environment
developed by KAIST. In this paper, we are going to show not only applicability of the DEVS formalism
to hardware modeling and simulation but also predictability of performance of the load balancer when

implemented with FPGA.

1. Introduction.

When designing a IP router, we implement
the forwarding engine of linecard with Network
Processor (NP) instead of using ASIC. NP
provides two characteristic: Programmability and
High Performance somewhat. ASIC doesn’t
provide programmability. But in performance,
unlike ASIC, NP doesn’t provide deep packet
processing at nominal wire speed that vendors
argue. .

In designing a fully distributed router, each
line card has distributed forwarding engine and
line interface. The line card supports simple
packet forwarding by looking up forwarding table
and QoS. In IntServ or DiffServ model, almost
packet processing function is performed in line
card. Packet filtering using Access Control List,
Flow identification and state maintenance, and
fine-grain traffic control function is performed in
line card also. The more functions are added, the
more performance degrades.

When considering QoS mechanism, we need
more processing power to maintain the nominal
packet processing speed. So, we adapt parallel
processing mechanism using two NPs and load
sharing between them. Two NPs are connected in
parallel between the line interface and switch

interface. We double up the processing power and
process the packet without the packet loss. But,
when the NP shares the input packet by simple
distribution mechanism such as time division
multiplexing-like method, there will be packet
sequence error. Some applications, for example
VoIP traffic and video stream traffic, assume that
packet arrives in order and regards the out-of-
order packet as packet loss and drop it. This
problem can be serious in some applications such
as voice over IP and video services, which assume
that packets arrive in order.

It is required to develop an effective packet
processing mechanism for using more than one
network processors in parallel in one linecard unit
of the router system. Simulation analysis is also
needed for verifying the mechanism.

The line card containing two network
processors needs a load balancer. The load
balancer has more than two destinations and
distributes packet traffic loads evenly.
Accordingly, it would be desirable to share packet
traffic loads among more than one such path,
while maintaining the order in which the packets
were sent in all cases where order matters.

To resolve such a problem, we propose a

- 440 -

load-balancing algorithm performing on a per-
flow basis.

2. System Architecture

The target system shown in Fig. 1 is a
switched router system under development. The
system consists of a switch fabric with 16 x
1Gpbs input/output ports, multiple linecards
providing connectivity to networks, and a control
unit. Each of linecards has a 1 Gbps packet-
forwarding engine. One of them is in charge with
a uplink path requiring a 2~2.5 Gbps processing
rate. It should require using two or more chipset
of the network processor which is capable of
1Gbps packet-forwarding.

In distributed architecture, each line card has
forwarding table and forwarding engine. A
distributed forwarding table is fully synchronized
with the table in the routing protocol processing
module in system CPU periodically.

CPU

| Routing I

2.5Gbps Uplink

Line Card

cPU Switch Fabric o | Line
| oo Engne | Card

FWD Engine

l Table A

peves Fwp | Line
Engine Engine Card

1Gbps Line Card
Line [Jwo Line
Card |Engine 2] Card

Fig. 1. Fully Distributed Forwarding-based router

In general, a router has an uplink port that
has higher data rate that other interface port. The
uplink line card is shown in Fig 1. It consists of
the block of initialization and status check, PHY
interface, Forwarding Engine, Address Lookup
unit. Switch fabric supports a link aggregation
(Port Trunking) of 2 or more switch link port
and regards the aggregated port as one logically.
In the uplink linecard, two chipset of network
processor is used as shown in Fig. 2. Each
network processor is connected to the each
switch port of the logically aggregated link.

In fig. 2, Search Machine executes an IPv4
Longest-Prefix-Match search in CIDR for the
next-hop lookup. CPU Module communicates
with the main routing processor through IPC,
initializes and controls the linecard. We are
implementing a 2.5Gbps POS (Packet Over
SONET) as an uplink interface. Packet Convert
Module has the POS PHY Level 3 interface. It
converts the packet from the PHY module into
the form required by the Network It adds the
control words of 32-bit width representing the

packet information. In the egress, MUX module
receives the packet from the two network
processors, removes the header and tail word and
sends the packet to the convert module whose
header arrives earlier. If packets arrive at the
same time, packets from No. 1 network processor
are first served.

CPU
Module
To Switch Network [
Processor [e
™ MUX
—+ Module —L
Search Search Packet | | PHY/
Machine Arbiter J— Convert Framer|
SSRAM T, Load
—— Balancer
| Network [T~
ToSwich | Processor [«

Back plane

Fig. 2. Structure of 2.5Gbps uplink linecard

In the ingress, there is the Load Balancer as
shown in Fig. 3. Load Balancer distributes the
packet from the Packet Convert Module by the
load-sharing algorithm. The algorithm should
satisfy the characteristic of even distribution and
packet sequence preservation.

FIFO #1
NP #1
B

Packet

Output Convert
Control > Module
Logic Load pram—

Balancing
FIFO #2 g
NP #2

Logic —

< Output
Control
Logic

— Data Signal

——> Control Signal

Fig. 3. Load Balancer

There are several simple algorithms that can
be used such as giving a priority to a specified
FIFO or sending a packet to one FIFO. If the
overflow happens, then send packet the other
FIFO. One of the algorithms can distribute
packets to each network processor on by one
alternatively. If a packet from PHY module is
small and the next packet is large and the input
pattern repeats every two packets, an overflow
happens in one FIFO and packet sequence error
will happen. To solve the overflow, Time
Division-like Packet distribution algorithm can
be used. This algorithm allocates the time slot to
each network processor by packet boundary. But
it can’t also solve the problem of packet sequence
eITor.

Simple algorithms like above can distribute
packets evenly in long term, but ignore the packet

- 441 -

flow and cannot maintain the packet sequence in
router.

N.P Number
REOF RXSOF B Entry .
LE pockar §- g e B

1

—_ -I Pipeline Buffer I—-
o Processor
H Flow ledi.
3 conral [—» FFO |, FIFO (]
Logic Select - Contro! |g.
Network
I Processor
Flow Entry
Table Control
Load Batancing LogictFPGA)

Fig. 4. Structure of Load Balancing Logic

To resolve such a problem, we propose a
load-balancing algorithm performing on a per-
flow basis. Fig. 4 shows the internal structure of
Load Balancing Logic of the algorithm that
satisfies the two characteristics. A flow is a
sequence of packets transmitted between a
specified source and a destination, generally
representing a signal session using a known
protocol. Each packet in one flow is expected to
have identical routing and access control
characteristics. We define a flow as a packet
sequence that has the same source and/or
destination IP addresses. If the packets of same
flow are sent to the same network processor,
packet sequence will be preserved.

Entry Number FIFO number New Source IP Address HitMiss.

4

1P Address i

H

FIFO(Circular Bufter Arch.) i
:

X IP Address Comp. i
cesn i
Address X P Address Comp. :
Pointer —>
X 1P Address. Comp, Priorty
O Encoder
X 1P Address. Comp.
Current X 1P Address
Pointer
XPIF Number
(FIFO number) Comparator
The oldest IP Address
is deletad{overwrited)

Fig. 5. Flow Table

The load balancing logic consists of such
components as flow table, flow control logic,
pipeline buffer, two FIFOs and its control logic,
and FIFO selection compensator. Flow Control
logic extracts the source IP address from newly
injected packet and sends the address to the flow
table. The flow table has the information of
packet flows that pass the linecard for specified
time. It has the table of FIFO-like structure. Each
entry has a field of address, number of allocated
network processor. It inputs the address, compares
the address with the table entry and outputs
hit/miss signal, entry number, and number of
network processor. If the hit signal is active,
Flow Control Logic modifies the packet header

with the information, number of network
processor, from the flow table. If inactive, FIFO
select compensator allocates the packet to the
FIFO, modifies the packet header and adds the
new entry to the flow table. FIFO Control block
lookups the packet header for the number of FIFO
and sends the packet to specified FIFO. FIFO
Control block relay the pack pressure signal to the
Packet Convert Module

3. Function Modeling and Simulation of Load
Balancing Logic
3.1 Models of Load Balancing Logic

A set-theoretic formalism, the DEVS
formalism [3] specifies discrete event models in a
hierarchical, modular form. Within the formalism,
one must specify the basic models, from which
larger ones are built, and how these models are
connected together in hierarchical fashion. A
basic model, called an atomic model, has
specification for dynamics of the model. The
second form of the model, called a coupled
model, defines how to couple several component
models together to form a new model. For
effectiveness of load balancer system, suggested
in this paper, that system (fig. 4) is modeled as
load balancer model with packet generator and
NPs, based on the DEVS formalism.

F Load Balancer Logic ——— J

Fig. 6. Load Balancer Model

In fig. 6, there are considered as three parts of the
experimental system, Packet Generator (PG),
Load Balancer Logic, and Network Processors
(NPs). The atomic model PG is used to model the
packet traffic nodes. Such model repeatedly
generates packets with exponential duration and
sends them to Load Balancer Logic with some
attributes; packet ID, source IP, input port,
destination IP, output port, service NP, enter time,
and service time. The coupled model Load
Balancer Logic is developed from input queue,
Flow Control Logic, Flow Table, and Demux for
describing behavior of packet analyzing,
classification, marking, and distribution.

In top of fig. 7, Flow Control Logic (FCL)
receives input packets from input queue when
FCL is ready to do. FCL has two phases behavior,
and the one behavior is packet receiving and
request to Flow Table (FT) for packet
classification. The other behavior is receiving
modified packet and transmitting to Demux.

- 442 -

— Flow Control Logic

2Psciein

? Restn
—

Fig. 7. Atomic Model of Flow Control Logic
and Flow Table

In bottom of fig. 7, FT has a relation list
with some columns;, flow ID, Source IP,
Destination IP and Service NP. FT that is
requested with input packet searches the row of
same source IP and destination IP. If such row is
existed, the row is refreshed and the packet is
marked service NP attribute with the item of the
row. If not, new row, related with source IP and
destination IP of input packet, is appended, and
service NP is decided from the comparison of
output queue states for load balancing.

Finally, distributed output queues and NPs
receive all output packets and calculate packet
delay and serialized status.

3.2 Simulation Result

Fig. 8 shows load-balancing result from
summation of total packet numbers with different
source IP. All packets with a same flow ID were
serviced in a same NP, and all flows were
distributed to two NPs almost balanced.

Number of Serviced Packats

Sowuce IPs

IlSaviced on NP1 O Serviced on NP2 |

Fig. 8. Flow classification result with source IPs

As seen in fig. 9, all packets are serviced at
almost the same time independent of the source
IP and the NPs process the packets of the same
flow with the same load balance. Fig. 10
illustrates the load of the service NPs. It is clearly
seen that adequate load balancing in being
achieved when comparing the processing time
and packet processing capacity of the two NPs.
Through the three figures shown above, using
the algorithm that this paper proposes, when

input packet flows with different source IP enters
the system, the flows are adequately distributed
across the NPs and the packets are serviced at
almost similar time and the same flow are
processed at same NP.

7.00

Average Aervice Time

Source IPs

lBAverage Service Time on NP1 B Average Service Time on NPd

Fig. 9. Average Service Time Result of
Serviced Packet with Source IPs

250.00 ¢”
200.00
150.00
10000

50.00

Total Number of Packets

Average Service Time

ONPt ENP2

Fig. 10. Average Service Time and Number of
Packets Comparison of NP1 and NP2

4. Conclusion

The algorithm can be used to implement the
uplink linecard having the multiple speeds of
other ports of switched router. When using more
than two network processor in parallel, if one
network processor fails, the performance of
linecard degrade gracefully. Generally, the speed
of transmission line advances the packet
processing speed of linecard. Parallel architecture
and the load-balancing algorithm are very useful
for the router. This method is applicable to the
linecard of OC-192 and firewall.

5. References

[1] Jaewoo Park, Kyouho Lee, Design and
implementation of POS inteface linecard in high-
end router, NCS2000, pp. 476-479, Dec. 2000

[2] W Bux W.E.Denzel and T. Engberson,
Technologies and Building Blocks for Fast
Packet Forwarding, Communications Magazine,
pp. 70-79, Jan. 2001

[3] B.P. Zeigler, H. Prachofer, T.G. Kim, Theory
of Modeling and Simulation 2nd, Academic Press,
2000.

~ 443 -

