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Abstract

A good arithmetic random number generator should possess full period, uniformity and independence,
etc. To obtain the excellent random number generator, many researchers have found good parameters.
Also an initial seed is the important factor in random number generator. But, there is no theoretical
guideline for using the initial seeds. Therefore, random number generator is usually used with the
arbitrary initial seed. Through the empirical tests, we show that the choice of the initial values for the seed
is important to generate good random numbers.
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1. Introduction

The ability to generate satisfactory sequences of random numbers is one of the key links between
Computer Science and Statistics. Standard methods may no longer be suitable for increasingly
sophisticated uses, such as in precision simulation studies. A simulation of any system or process in
which there are inherently random components requires a method of generating or obtaining numbers that
are random, in some sense. All the randomness required by the simulation model is simulated by various
random number generators whose output is assumed to be a sequence of independent uniform random
variables, which is denoted "U(0,1)". These random numbers are then transformed as needed to simulate
random variables from different probability distributions.

But, the random variable in U(0,1) is an mathematical abstraction. In practice, there are no true random
variables. As of today, from a prescribed mathematical formula but satisfy different requirements as if
they were true random numbers, we gain the sequence. Such a sequence is called the pseudo-random and
the program or procedure that produce such a sequence is called pseudo-random number generator. The
most popular algorithm for generating pseudo-random numbers was suggested by Lehmer in 1949. It is
called the congruential method. The method relies on a sequence of integers that are computed by one
formula

m; =g(m,'_|,m,'_2,"')(m0dM)s 1)
where a fixed deterministic function g of previous given elements m;_,,m, ,,---,the modulo M are
prescribed integers. As pseudo-random numbers, the fractions m;/M are used. In particularly, if g is
a linear function of m,_,,m,_,,---, we called it as a linear congruential generator( LCG ). In general the

LCG is probably the most widely used and best understood kind of random-number generator. Turning to
small M, the length of period reduces. On the other hand, if a long period generator is implemented,
then the generation is slow. So there are many alternative types. In order to the formula (1) have the full
period and good statistical properties, the values of the parameters in a function g must be carefully
chosen[1,4,8]. In this paper, we think of the Multiple Recursive Generator[3,4,9,10] and the Combined
Generator[5,9.11]. In particular, we studied two combined multiple recursive generators which were
designed by L'Ecuyer[2]. We have interest to the statistical properties of generators.

In the formula (1), when g(m_;,m;_;, --,m_,)=aym_;+aym_,+---+a;m;_,, where a;'s are

constants and the initial values m;_y,m;_,,---,m;_, are not all zero. We called them the gth-order

multiple recursive generators ( MRGs ). From the finite field theory, the qth-order MRGs can produce
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random numbers of full period M7 —1 if and only if the polynomial f(x)= x? —aqx?! —aisa

primitive polynomial modulus M. Knuth[7] describes the following conditions for testing the
primitiveness modulo M :

@) (=17 a, is a primitive root modulo M,

.s r —1

(i) [x"mod f(x)JmodM =(-1)""qa,,

M7 -1

(M-1)

Theoretically, there are exactly choices of (g,a,,°-a,) which satisfy these conditions, where

(iii) degree { [x"* mod f (x)]modM '} > 0,, for each prime factor s of r, where r =

¢(M9 -1) is the Euler function defined as number of integers which is smaller than and relatively prime

to M*—1.For the simplest case of ¢g=2 and the very popular modulus M =23! -1, there are around
5.74E17’s candidates[4]. Hence a significant amount of computation is involved in searching for
(ay,a,,---a,) which are able to produce random numbers of full period.

To increase the period and try to get rid of the regular patterns displayed by LCGs, it has often been
suggested that different generators be combined to produce a hybrid one. Such combination is often
viewed as completely heuristic and is sometimes discouraged. But besides being strongly supported by
empirical investigations, combination has some theoretical support. First, in most cases, the period of the
hybrid is much longer than that of each of its components, and can be computed. Second, there are
theoretical results suggesting that some forms of combined generators generally have better statis tical
behavior. In this paper, we think about the combination of two MRGs, which was developed and studied
by L'Ecuyer, is defined by

my; = (@ym i = @y gy ) [mod(2%% — 209)],
My = (@g My g —aq,my ) [mod(272 ~ 22853 )],

Y, = (my; = my )mod(2>2 - 209)],
Y.

T2 09
where a,, =1403580 ,a, , = 810728 ,a,; = 527612 ,a, , =1370589 , and has period of approximately

i

2]91( which is about 3.1x10°%’ ) as well as excellent statistical properties through dimension 32[2]. The
advantage of the above generator is a brief program, simple computations and a huge period. In order to
use this algorithm, likewise using any other random generators, we need the seed vector with 6-elements
{m,0,my ,my0,my ) ,my 5,my 3}

The choice of the initial seed vectors in random number generator could not be determined by the
theoretical basis. The recommendation to select initial values at random is doubtful. In general, the initial
seed vectors could be chosen by empirical methods. To be sure, the careful selection of the seeds is
important to generate the pseudo-random numbers. So, L'Ecuyer gave the 10,000's seeds vector as related
headerfile and asserted that the results have excellent statistical properties. But, for the empirical test to
see the uniformity and independence of the two combined-MRGs, we obtained the different results. The
test results will be given in the next section.

2. The Empirical Tests

In this section, we practice the various simulation to test the uniformity and independence of distribution
of the corresponding pseudo-random numbers. And all tests are related to the deterministic interpretation
of goodness-offit tests. In facts, d-dimensional random points with independent Cartesian coordinates
D> Ya b T3 Vaa b (Yagurs==*» Yag 1o+ are uniformly distributed in the d-dimensional unit cube at
any d. This property is necessary and sufficient for a successful implementation of Monte Carlo
algorithms with constructive dimension 4. To test whether the null hypothesis H, : the above d-tuples

sequences are distributed uniformly on [0,1]¢, is true or not, divide [0,1] into k subintervals of equal
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size and let f}hh,,,_, be the number of 7;'s having first component in subinterval j;, second

Ja
- : e X N, 2
component in subinterval j,, etc. If we let 2 ‘_'W;"'jz_;(fh,jszd —k—d) , then x5 will have
= a=
an approximate chi-square distribution with degree of freedom k? —1, under the null hypothesis H o IS

true. The smaller is x]%, the better is the agreement of empirical values with theoretical ones. large

values ;(,f, correspond to small p-values. So, too small values of p-values indicate that the experimental

data contradicts to our uniformity hypothesis. Firstly, for the uniformity, we have tested for the case d=1,
which is called the frequency test, and d=2,3,4, which are called the serial tests. For modeling different
problems, different quantities of pseudo-random numbers are necessary. Therefore, we have simulated

various initial seeds of a sequence with lengths N =N, x2°, where s=01,2,---,14, N, =600, 300,
250, 150, according to the d=2,3 and 4, respectively. And let k the number of subintervals of [0,1] be as
16, 8, 5, and 4 with respect to the d=1, 2, 3, and 4.

Secondly, for the test of independence, we have proceeded the run test. Let »n, be the number of runs of
length i in a sequence of N =600x2°, where s=0,1,2,---,14 . For an independent sequence, the

expected values of »; for runs up and down are given by

——[NG> +3i+D)-(@ +3i* -i-4)], iSN-2,
E(n)= i+3)
2
~r
Under the null hypothesis H: the pseudo-random numbers which are generated by the two combined

i=N-1,

"; —nps)
nps

4 32 ,
MRG is distributed independently. We know )fN = z(ni "pi) +( , where n, is the
é np,
i=1 J
number of runs with lengths 25 and n=n, +n, +n, +n, +n; means the total number of runs, and the
probabilities p; = E(n;), for i=12,--,N—1, will have an approximate chi-square distribution with
degree of freedom 4.
For all tests, we use ®; = max ;fN, for i=1, which means the frequency test, for i=2,3 and 4, which

means the 2, 3, and 4 dimensional serial tests, respectively, for i=5, which means the run test as the
criteria. When all values of & are less than the quantiles dJ:' with respect to p-values as 0.1, we will
say that the pseudo-random numbers generated by two-combined MRG are distributed uniformly and
independently. The recommendation of L'Ecuyer was arbitrarily to select an initial value in 10,000's seed
vectors was proposed in his header-file. We have tested arbitrary 100 sequences initial seed vectors

among 10,000. And we selected the seed vectors meets criteria in all five tests at the same time. The
results of the above tests are terrible. The only one 5230th seed vector (1338960199, 3947731640,
1058186044, 1875415108, 1948201518, 3217931286) passed the all five tests. And the results

®; = max xf, and P =min P( x,zv) of each tests are described in Table 1.

1

Table 1. The results of test with the 5230th initial seed vector

Tests ®; = max X (min P(en)) ®," withp — value0.1
Frequency test 19.6557(0.19) 223
Serial : 2-dim 75.4642(0.14) 71.7
Serial : 3-dim 144.329(0.10) 145
Serial : 4-dim 283.04(0.15) 284
Run Test 7.6133(0.11) 7.78
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Continuously, we proceed with the five empirical tests for all given 10,000's seed vectors. It required
the very expand test time. We found out the only 44 of 10,000 passed all five tests. Table 2 shows the
result of tests.

Table 2. The list of numbers among 10,000 which passed the all five test in the L'Ecuyer’s headerfile

The Number of the seed vectors
74 256 315 420 1007 | 1373 | 1385 1561 | 2069 | 2495 | 2744
2859 | 3139 | 4081 | 4255 | 4416 | 4950 | 5147 | 5214 | 5230 | 5376 | 5798
6020 | 6090 | 6105 | 6118 | 6123 | 6154 | 6246 | 6537 | 6921 | 6934 | 7389
7900 | 8372 | 7374 | 8983 | 8990 | 9329 | 9424 | 9542 | 9568 | 9718 | 9998

3. Conclusions

In simulation studies, the quality of the random number generator adopted has a major effect on the
results derived. An ideal random number generator should possess at least the properties of long period,
good lattice structure, and sound statistical properties. The arbitrary selections of the initial seed values in
the random number generators would be not a suitable results. So, we select the initial conditions with
attention. As a future theme, we would find the theoretical condition for good random number generator
in various cases.
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