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A random number generator based on the combination of the
Multiple Recursive Generators

Tae Soo Kim*, Young Hae Leexx

Key Words: random number generator, multiple recursive generator, empirical tests

Abstract

The Multiple Recursive Generator(MRG) has been considered by many scholars as a very good

Random Number generator. For the long period and excellent statistical properties, the method of

the combination with random number generators are used.

In this paper, for two—combined

MRGs, we examine the statistical properties and show the importance of the seeds likewise other

random number generators.

superiority.

1. Introduction

The ability to generate satisfactory sequences
of random numbers is one of the key links
between Computer Science and  Statistics.
Standard methods may no longer be suitable for
increasingly sophisticated uses, such as iIn
precision simulation studies. A simulation of any
system or process in which there are inherently
method of

that are

random components requires a

generating or obtaining numbers

random, In some sense. All the randomness
required by the simulation model is simulated by
various random number generators whose output
is assumed to be a sequence of independent
which

numbers

1s  denoted
then

uniform random variables,

"U(0,1)". These random are
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souhata Ay Fabn AFas

And we modify the two-combined MRGs and verify the statistical

transformed as needed to simulate random
variables from different probability distributions.
But, the in U1
mathematical abstraction. In practice, there is no
As of today,
but

if they were true

random variable is an

true random variables. from a

prescribed mathematical formula satisfy
different requirements as
random numbers, we gain the sequence. Such a
sequence is called the pseudo-random and the
program or procedure that produce such a
sequence 1S number
The

pseudo-random

called pseudo-random
generator. most popular algorithm for
generating numbers
suggested by Lehmer in 1949, It is called the

congruential method. The methods relies on a

was

sequence of integers that are computed by one

formula

m;=glm; ,m; - )(mod M), (1.1)
where a fixed deterministic function g of
previous m; ,m; 5 , the modulus M are
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prescribed integers. As pseudo-random numbers,

the fractions my/M are used. In particularly, if

glm; ,m; o,-)=am; ;+c¢ , where ac are

P4

the given constants, we called it as linear
congruential generator({ LCG ). In general the
LCG are probably the most widely used and

best kind of

generator. One one hand, turning to small M,

understood random-number

the length of period reduces. On the other hand,
if a long period generator is implemented, then
the generation is slow. So these are many
alternative types. In order to the formula (1.1)
have the full period and good statistical
properties, the values of the parameters in a
function g must be chosen very carefully. In
we give the Multiple Recursive

and the

Section 2,
Generators combined generator. In
particular, we two combined multiple recursive
generators which was designed by L'Ecuyer.
We have interest to the statistical properties of
generators. So we have the empirical test for
the two combined multiple recursive generators
in Section 3. We state an altermative of the
referenced generators to avoid defective and

show the effective results.

2. A Combination of Multiple
Recursive Generators

In the formual (1.1), when
glm; \m; »--)=am; (tretragm; oy,
where a;’s constants, we called it the gth-order

multiple recursive generators ( MRGs ). From
the qth-order MRG

produce random numbers of full period m“-1
if and

finite field theory, can

only if the polynomial

flxy=x-ax"’ 1—‘--—09 is a primitive
modulo m. Knuth[*] describes the
following conditions for testing the primitivity of

f(x):

polynomial

@ (-1'a,

(1) [x"modf(x)Imodm=(-1)¢ 'a,

is a primitive root modulo m,

(iii) degree {[x”*modf(x)Imodm} > 0, for each

prime factor s of r, where
r=(m?-1)/(m-1).
Futhermore, one very appealing class of

generators 1s obtained by the combining MRGs.
The combined generators can increase the period
improve the uniformity and
of their

generators. In this paper, we think about the

length and

independence  properties individual
combination of two MR(G, which was developed

and studied by L’Ecuyer, is defined by

my; =(a1,1m1‘,» 27 AN 3)[m0d(2?2—209)]

moy; :(ag‘lmgy[ 1—a2,gm2,¢-,3)[mod(232—22853)]
. =(my;=-my)lmod (2% -209)]

_ Y

fo2%oo09”

ay,=1,403,580,a, »= 810,728,

agy1:527,612, Ay~ 1,370,589,

and has period of approximately 2 ( which is

about 3.1x10") as well as excellent statistical
properties through dimension 32 (Averill M. Law
& W. David Kelton 2000). The advantage of the
above generator is a brief program, simple
computations and a huge period. In order to use
this algorithm, likewise using any other random
seed vector with

generators, we need the

6-elements {mo,m 1,/m 12,7 50,M 21,M 22 ).

To be sure, the careful selection of the seeds
is important to generate the pseudo-random
On the other,
10,000's seeds vector as related header-file and
that the
statistical properties. But, for the empirical test

number. L’Ecuyer gave the

assert results have an excellent
to see the uniformity and independence of the
two combined-MRG, we obtained the different
results. The test results will be given in the

next section.

3. The Empirical Tests
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In this various

simulation  to

section, we practice the
test the
independence of distribution of the corresponding
And all

uniformity  and

pseudo-random numbers. tests are

related to the deterministic interpretation of
goodness-of-fit tests. In facts, d-dimensional
random points with independent Cartesian

coordinates
OV V) (Ve Voa) (Vagen, = Vag), -
are uniformly distributed in the d-dimensional
unit cube at any d. This property is necessary
and sufficient for a successful implementation of
Monte with

whether the

algorithms constructive

test

Carlo
dimension d. To null
hypothesis H, : the above d-tuples sequences
are distributed uniformly on [0,1], is true or not,
devide [0,1] into k subintervals of equal size and
let fjoia

component in subinterval j,,

be the number of V¥;’s having first
second component

in subinterval j, etc. If we let
2

kd k k N
DINED fjl,j:.~~-Jf—‘) ,

X2 = K
N~ y d
N fmr k

then Xir will have an approximate chi-square

distribution with degree of freedom k?-1 under

the null hypothesis H, is true. The smaller is
xﬁ, the better is the agreement of empirical

values with theoretical ones. Large values X%

correspond to small p-values. So, too small
values of p-values indicate that the experimental
data

Firstly, for the uniformity, we have tested for

contradict our uniformity hypothesis.
the case d=1, which is called the frequency test,
and d=234, which are called the serial tests.
For different

quantities  of numbers are

modeling different problems,
pseudo-random

necessary. Therefore, we have simulated various

initial seeds of a sequence with lengths
N=N_ %27, where s=0,1,2, --,14,
N ,=600,300,250,150, according to the
d=1,23 , and 4, respectively. And let k the

number of subintervals of [0,1] be as 16, 8, 5,
and 4 with respect to the d=1, 2, 3, and 4.
Secondly, for the test of independence, we have

proceed the run test. Let n; be the numbers of

runs of length i in a sequence of N=600x2°
s=0,1,2,---,14

sequence, the expected values of n; for runs up

where For an independent

and down is given by

g NG+ 1)
E(n)-= (i°+3i*-i-4)], i<N-2,
iT%[T i=N-1.
Under the null hypothesis H,: the

pseudo-random numbers which is generated by
combined MRG are distributed
independently, we know

the two

X2 = ﬁ: (ni‘npi)z + ( ”5"”135/)2
N np; nps’

where ns’ is the number of runs with lengths
>5 and n=n;+tnstnztngtng’ means the
total number of runs, and the probabilities are
p;=E(n;) , for =12~ N-1,

approximate chi-square distribution with degree

will have an

of freedom 4.
For all tests, we use ®;= max; x?\, , for i=1,
which
=23, and 4,

dimensional

means the frequency test, for
which mean the 2, ,3, and 4
1=5,
which means the run test as the criterions.

When all values of 9,
m:*! i:1¥2)'--75)
different p-values in Tables 1 previously, we
say that the

generated by two-combined MRG are distributed
uniformly and independently on [0,1].

serial tests, respectively, for

are less than quantiles

with respect to the three

will pseudo-random numbers

The recommendation of L’Ecuyer was arbitrary
to select initial value in 10,000's seed vectors
which was proposed in his header-file. In this

paper, we choose p-value as 0.1. We have

_1%‘
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tested arbitrary 100 initial seed

vectors among 10,000. And we selected the seed

sequences

vector which meet criterion in all five tests at
the same time. The results of the above tests
are terrible. The only one 5230th seed vector
(1338960199, 3947731640, 1058186044, 1875415108,
1948201518, 3217931286) passed the all five tests.

Tests p-value
0.1 0.05 0.01
Frequency 22.3 25.0 30.6
Serial:2-dim 777 82.5 92.0
Serial:3-dim 145 151 163
Serial:4-dim 284 293 310
Run 7.78 9.49 13.28

Table 1. x° quantiles.

For each sequences with 5230th seed vector,
the results ®,= max, X3 and P,=minP(X%),

where the probabilities P(X3), where

P)= [ fodx, f0 s a probability density

x® with degree of freedom are described in

Table 2. For all (=125, we see that
b, < & .
4. Conclusions
$.= max . x'\
Tests )
( min P(X%))
P 18.6557
requency (0.19)
Serial © 2-di 75.4642
erial : im (0.14)
) ) 144.329
Serial : 3-dim
(0.10)
) . 283.04
Serial © 4-dim
(0.15)
Run Test 7.6133
anoes (0.11)

Table 2. Results of Test with 5230th initial
seed vector

To generate random numbers of long period,
one method recommended by many scholars is

the multiple recursive generator which s
essentially the extension of the usual prime
modulus multiplicative linear congruential

to kK terms. And to
and better statistical

generator from one term
obtain the
properties, we

longer period
use the combination of the
But

initial seed vectors in random number generator

previous generators. the choose of the
could not be determined by the theoretical basis.
So the initial seed vectors could be chosen by
Out tests mean that the
statistical properties are depend to the selection
The 10000's seed

vectors which was given by L'Ecuyer is not

empirical methods.

of the initial seed vectors.
enough to use as a proper initial seed vectors.
For the future theme, we consider the more
MRGs
appropriateness of the given initial seed vectors.

combined and examine the
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