Forecasting of Daily Inflows Based on Regressive Neural Networks
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ABSTRACT: The daily inflow is apparently one of nonlinear and complicated phenomena. The nonlinearity
and complexity make it difficult to model the prediction of daily flow, but attractive to try the neural networks
approach which contains inherently nonlinear schemes. The study focuses on developing the forecasting
models of daily inflows to a large dam site using neural networks, In order to reduce the error caused by high
or low outliers, the back propagation algorithm which is one of neural network structures is modified by
combining a regression algorithm. The study indicates that continuous forecasting of a reservoir inflow in real
time is possible through the use of modified neural network models. The positive effect of the modification using
the regression scheme in BP algorithm is showed in the low and high ends of inflows.

1 INTRODUCTION

In order to operate reservoirs efficiently for both water utilization and flood control purposes, it is necessary to
predict the inflow to the reservoirs in a precise manner. The daily inflow has an apparent nonlinear and
complicated physical structure which makes difficult to model it, but daily runoff forecasting is used for
reference data in planning of supply and active storage of reservoirs.

Neural networks (NNs) is a computational framework consisting of massively connected simple processing
units which called neurons. The following advantages which can be achieved by using neural networks for
rainfall-runoff relationship analysis have been showed by various researches recently; 1) Application of NNs
does not require a prior knowledge of the process because NNs has black-box properties; 2) NNs easily
converges to the optimal solution and does not need any assumptions; 3) NNs has inherently the property of
nonlinearity; 4) NNs can have the multiple inputs having the different characteristics, this can make NNs have
the time-space variant property; 5) NNs has the adaptability to the change of problem environment, therefore,
using a NNs, several cases can be simulated for the same knowledge. The reasons as mentioned above make
NNs have been widely studied and applied for solving the water resources problems.

French et al.(1992) developed a neural networks to forecast rainfall intensity fields in both space and time
domains. Tang and Fishwick (1993) showed the applicability of neural networks as one of the models for the
time series forecasting and compared the Box-Jenkins method against the neural network method for long and
short-term memory series. Zhu et al.(1994) proposed a new method to forecast runoff using neural networks and
compared with the fuzzy method. Smith and Eli (1995) used spatial distribution rainfall patterns as input data to
measure runoff. Thirumalaiah and Deo(1998a and 1998b) forecasted water levels of which the occurrence is
influenced by physical processes which are highly complex and uncertain. Kim(2000) forecasted daily
streamflow at Jindong station in Nakdong river basin using multiplayer neural networks models, and compared
the results with those obtained by a multiple regression model.

Up to now, although many NNs models are developed for rainfall-runoff relationship, many of them are
limited to forecasting just short-term hydrologic data considering the flood events. In this paper, we try to make
the neural network model to forecast the continuous daily inflow to be used effectively for reservoir operation in
real time basis. In addition, we suggest a new modified scheme of neural forecasting model to improve the
forecasting accuracy for the extremely high and low flow conditions.
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2 NEURAL NETWORKS

A neural network is a computational framework consisting of massively connected simple processing nodes, or
neurons. The nodes are classified into input, hidden and output nodes. Input nodes receive data from sources
external to the network, hidden nodes send and receive data only from other nodes in the network, and output
nodes produce data generated by the network which goes out of the system. They are typically interconnected
among themselves by weights. The feed forward neural networks provide a general framework for representing
nonlinear functional mappings between a set of input variables and a set of output variables. The typical three-
layered networks shown in Fig. 1 are based on a linear combination of the input variables which are transformed
by a nonlinear activation function.
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Fig. 1. Scheme of Neural Network Model

In this network there are 4 inputs, M hidden nodes and C output nodes. The complete explicit
expression for the function is obtained by

yk =}{iwkjf[iwﬂxtJi| (1)
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where, w, is a weight in the hidden layer, f() is the activation function of the hidden neurons, w,, is a

weight in the output layer, and f(-) is the activation function of the output neurons.

Among many NNs’ paradigms, the back-propagation algorithm is by far most popular. This algorithm
minimizes the sum-squared error of the network by using the steepest descent approach. The NNs’ weights and
bias are adjusted moving a small step in the direction of the negative gradient of the error function during
iteration. This algorithm is based on the error-correction learning rule. Basically, the error back-propagation
process consists of two passes through the different layers of the network: a forward pass and a backward pass.
In the forward pass, an input vector is applied to the nodes of the network, and its effect propagates through the
network, layer by layer. Finally, a set of output is produced as the actual response of the network. During the
forward pass the synaptic weights of the network are all fixed. The common methods to improve the training and
testing accuracy are to use a momentum and an adaptive learning rate in back propagation routine. The reader
can refer to Haykin (1994) for more detail description of feed-forward neural networks with back propagation
and its improvements.

3 MODIFICATION OF NEURAL NETWORKS

Due to the high variability of daily inflow data containing extremely high values in flood seasons and low values
in dry seasons, the neural network model for inflow forecasting usually has made worse accuracy of forecasting
due to over-trained and under-trained problems. In order to overcome the problems, this study suggests a
modified NN scheme using a regression technique as follows and as shown in Fig. 2. In the modified NN model,
first the model is trained using back propagation process and then the necessary weights are adjusted.
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Fig. 2. Schemes of Modified Neural Networks

Then, simple regression parameters are obtained between the trained (estimated) output and corresponding actual
observed data. During this, the whole range of data is divided into adequate intervals and the regression
parameters are determined for each interval, respectively, Then the forecasting models are modified including
the regression parameters directly as shown in Fig 2. In this study, the three cases of rainfall-runoff process are
considered as follows, which may be possible in the real situation of reservoir operation; (1) the case available to
get point rainfall data from several gages and a inflow into reservoir, (2) the case that mean rainfall over the
proposed basin and the inflow can be obtained, and (3) the case with only the inflow data into the reservoir. Then
the corresponding forecasting models of daily inflow are expressed as follows:

m Nonlinear Spatial Rainfall-Runoff Model : R-NSRRM

2 e Fe-2), -, R*(- :
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m Nonlinear Average Rainfall-Runoff Model : R-NARRM
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m Nonlinear Auto-regressive Runoff Model ; R-NARM
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where, Q:(r) is the forecasted inflow, T is the forecast time (¢+/Jeadtime), «, [, and y are linear

regression factors, R*(¢—n,) is the rainfall with n,, lag time in k site, R(t-n,) is the mean rainfall
with n, lagtime, and fh(-) represents the relationship between input and output expressed by Eq. (1) in NNs.

As mentioned before, the regression factors are obtained from the training output. Here, the NSRRM is the
model! using point rainfall data as input in order to consider the spatial distribution of rainfall. NARRM is the
model using mean rainfall data so it does not consider the spatial distribution of rainfall. NARM is the model
using inflow data only as in ARMAX. The notation R- in Eq. (2)~(4) indicates that the mode] is modified with
regression. Each model is trained and applied for normal, flood, and dry flow seasons, respectively, in order to

consider the seasonal variability of daily flow in modeling.
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4 STUDY AREA

The project region was the basin of Daechung Dam located in Geum River basin in Korea as shown in Fig. 3.
That Daechung Multipurpose Dam is located 150 km upstream from Geurn River mouth with Yellow Sea and
has a storage capacity of 1,490x10° m®and a drainage area of 4,134 km”. The daily inflow data for the period
from January 1983 to December 1995 are obtained and used in this study.

The temporal variation of data is quite big due to the seasonal variability of meteorological and morphologic
characteristics, which needs to be considered. Therefore, the modified NN model have been trained with the
input patterns for three distinctive seasons, namely normal(from March to June), flood(from July to September),
and dry(from October to Next February) seasons, respectively.

Fig. 3. Geum River Basin and Daechung Dam Subbasin

5 NEURAL NETWORKS IMPLEMENTATION

The data form 1983 to 1995 was divided into two parts: one is training pattern including 1983 to 1992 data and
the other is testing (forecasting) pattern including 1993 to 1995 data. At first, the data was normalized to the
range of [0.05, 0.95] before feeding into the neural network models to improve the efficiency of NNs model
empirically. It is a type of preprocessing to prevent the noise and distortion from nonlinear transformation. Then,
it was necessary for the output to be denormalized after training and forecasting. The number of hidden neurons
was determined experimentally to meet the model accuracy since there has not been any well-defined algorithm
for determining the optimal number of hidden neurons.

6 RESULTS OF FORECASTING DAILY INFLOW

Both the original models NNs (NSRRM, NARRM, and NARM) and the proposed modified models R-NNs (R-
NSRRM, R-NARRM, and R-NARM) for forecasting daily inflow are constructed to forecast the 1-Day, 2-Day,
3-Day, and 5-Day ahead inflows, The forecasting efficiency is compared for both models and showed clearly
in Fig.4. The result indicates that the R-NNs are superior to the NNs in terms of fitting the low and high inflow
data for all cases tested in this study.

Figure 5 compares the validation results of daily inflow forecasting between the NNs and the R-NNs with
increasing lead times. In terms of RMSE(root mean square error) and CC{correlation coefficient), the results
indicate that the R-NNs result lower RMSE and higher CC than the NNs, which means better forecasting
accuracy of the R-NNs. The forecasting accuracy is decreased for all cases as the lead time increases, but the R-
NNs still show superiority in the cases with the increased lead time than the NNs do.

In Table 1 and 2, the forecasting results between the NNs and the R-NNs are compared regarding to both
peak flow and volumes for year 1993 and 1995, respectively. The ratios of forecasred peak flow to the
observed peak flow in percentage are indicated in the blankets. The results indicate that both the peak flow and
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the inflow volume from the R-NNs are closer to the real values than those from the NNs are.
estimated by the NNs seem to be underestimated seriously, but are improved by the R-NNS by approximately
According to Table 2, the R-NNs showed closer inflow volumes than the NNs. For the NNs,
the inflow volumes are under-estimated in 1993 and over-estimated in 1994 and 1995, The R-NNs considerably

30 % in average.

adjusts these poorly estimated inflow volumes.
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Fig. 4. Comparison of Scatter Plot for 1-Day ahead Forecasting Inflow
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Among three NNs, the NARRM performed apparently the best. In the R-NNs, R-NARRM shows the best
performance in forecasting the reservoir inflow, too. It can be analyzed that the mean rainfall data used in
NARRM reduce the noise and deviation contaihed in the spatial rainfall data since NARRM has a similar trend

between its input and output, that is, between hyetograph and hydrograph.

Table 1. Comparison of Peak Inflows from NNs and R-NNs (unit:cms)

Year { Lead Time | NSRRM | R-NSRRM | NARRM | R-NARRM NARM R-NARM
D 19818 3260.9 2599.0 31912 2584.9 3194.8
(56.0%) | (93.0%) | (73.4%) | (902%) } (73.0%) | (90.3%)
2D 1982.0 33494 2327.9 31324 2335.2 3088.6
1993 (56.0%) | (94.6%) | (658%) | (88.5%) | (66.0%) | (87.3%)
3D 1893.2 3225.5 21894 29925 2079.9 2969.9
(52.5%) (91.1%) (61.9%) (84.5%) (58.8%) (83.9%)
5D 1798.5 2979.6 1774.6 2656.2 1409.3 2546.3
(50.8%) (84.2%) (50.1%6) (75.0%) (39.8%) (71.9%)
D 23453 3894.4 32279 39634 3180.2 3930.6
(56.4%)_|  (93.6%) | (77.6%) | (953%) | (76.5%) | (94.5%)
D 2286.3 3863.6 2935.1 3949.6 29742 3933.7
1995 (55.0%) (92.9%) (70.6%) (94.9%) (71.5%) (94.6%)
3D 23262 3963.3 2979.1 4067.9 2767.9 39524
(55.9%) (95.3%) (71.6%) (97.8%) (66.5%) (95.0%)
5D 2538.9 4206.2 2890.3 43262 2196.9 39692
(61.0%) {101.1%) (69.5%) (104.0%) (52.8%) (95.4%)
() : Percentage to the observed values 3539.5¢cms of 1993 and 4159.5¢ms of 1995
Table 2. Comparison of Inflow Volume between NNs and R-NNs (unit : 10° m®)
Year Iff;(: NSRRM | R-NSRRM | NARRM | R-NARRM | NARM | R-NARM
D 2.8059 2.9837 3.2135 3.8192 3.3540 3.5102
(76.1%) (80.9%) (87.2%) (103.6%) (91.0%) (95.2%)
D 2.7042 3,2398 2.9845 3.2246 3.1722 3.7077
1993 (73.3%) (87.9%) (80.9%) (87.5%) (86.0%) (100.6%)
3D 2.7549 3.4298 2.9799 3.4499 3.2897 3.5638
(747%) | (93.0%) | (80.8%) | (93.6%) | (892%) | (96.7%)
5D 2.6827 3.6439 2.8024 3.2375 3.1247 3.4736
(72.8%) (98.8%) (76.0%) {87.8%) (84.7%) (94.2%
D 1.1585 0.7880 1.3949 0.8758 1.1023 0.9057
(139.8%) (95.1%) (168.3%) (105.7%) (133%) (109.3%)
2D 1.3089 0.7277 0.9772 0.7198 1.3669 0.9584
1994 (157.9%) | (87.8%) | (117.9%) | (86.8%) | (164.9%) | (115.6%)
1D 1.5209 0.7855 1.1624 0.7587 1.3884 0.9765
(183.5%) | (94.8%) | (140.2%) (91.5) (167.5%) | (117.8%)
5D 1.8410 0.8332 1.3053 0.8041 1.3372 0.9465
(222.1%) (100.5%) (157.5) (97.0%) (161.3%) (114.2%)
D 1.9556 1.7695 2.3410 1.8739 2.0240 1.9003
(120.0%) | (108.6%) | (143.7%) | (115.0%) | (1242%) | (116.6%)
D 2.2580 1.7646 1.8537 1.7004 2.2758 1.9084
1995 (138.6%) (108.3%) (113.7%) (104.3%) (139.6%) (117.1%)
3D 2.4790 1.8289 2.1604 1.8088 2.2212 1.9460
(152.1%) (112.2%) (132.6%) (111.0%) (136.3%) (119.4%)
5D 2.8244 1.8563 2.1283 1.7750 2.1525 1.8692
(173.3%) | (113.9%) | (130.6%) | (108.9%) | (132.1%) | (116.5%)

() : Percentage to the observed values 3.6871x 10° m® of 1993, 0.8289x 10° m®
of 1994, and 1.6296x 10° m’ of 1995

-50~




7 CONCLUSIONS

This paper focused on developing forecasting models for the daily inflows into a large reservoir based on neural
networks. Moreover, in an effort to improve the accuracy of high and low flow forecasting, a modified model
with regression scheme was suggested and validated comparing with the traditional neural network scheme.
Then, the following conclusions could be made.

(1) Three model types were suggested to cover the possible situations which can occur in the real reservoir
operation. The models were following; NSRRM : the model which can be used if spatial rainfall data can be
obtained for a reservoir basin in real time; NARRM: the model which can be used if spatially averaged
rainfall data can be obtained; NARM: the model which can be used with the inflow only without rainfall
data.

(2) The modified neural network models, R-NNs, were superior to the traditional neural network models, NNs,
for continuous forecasting of reservoir inflows in real time in terms of several measures such as RMSE, CC,
peak inflow and inflow volume.

(3) Regarding to the lead times of 1-day, 2-day, 3-day, and 5-day, the R-NNs showed better performance than
the NNs did. In addition, the R-NNs showed an acceptable forecasting performance even for 5-day, while
the NNs were failed.

(4) The R-NN scheme developed in this study is exected to effectively model the time series with high
variability in nature,

8 REFERENCES

French, M.N., Krajewski, W.F., and Cuykendall, R.R. (1992). “Rainfall forecasting in space and time using a
neural network.” Journal of Hydrology, Vol. 137, pp. 1-31.

Haykin, 8. (1994). Neural networks: A comprehensive foundation, Macmillan College Publishing Co., Ontario,
Canada.

Kim, S.W. (2000). “A study on the forecasting of daily streamflow using the multilayer neural networks model.”
J. of KWRA, Vol. 33, No. 5, pp.537-550.

Lettenmaier, D.P. and Wood, E.F. (1992). “Hydrologic forecasting.” Handbook of Hydrology, Edited by
maidment, D. R., McGraw-Hill, pp. 26.1-26.30.

Smith, J. and El, R.N. (1995). “Neural-network models of rainfall-runoff process.” J. of Water Resources
Planning and Management, ASCE, Vol. 121, No. 6, pp. 499-508.

Tang, Z. and Fishwick, P.A. (1993). “Feedforward neural nets as models for time series forecasting.” Journal on
Computing, ORSA, Vol. 5, No. 4, pp. 374-385.

Thirumalaiah, K. and Deo, M.C. (1998a). “River stage forecasting using artificial neural networks.” J. of
Hydrologic Engineering, ASCE, Vol. 3, No. 1, pp. 26-32.

Thirumalaiah, K. and Deo, M.C. (1998b). “Real-time flood forecasting using neural networks.” Computer-
Aidded Civil and Infrastructure Engineering, Blackwell Publishers, Vol. 13, pp. 101-111.

Zhu, ML, Fujita, M., and Hashimoto, N. (1994). “Application of neural networks to runoff prediction.”
Stochastic and Statistical Methods in Hydrology and Environmental Engineering, Vol. 3, pp. 205-216.

~51—



