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A quantum-mechanical harmonic oscillator undergoes continuous amplitude fluctuation even in its

ground state. This fluctuation, also known as the vacuum fluctuation, arises from the nonvanishing

commutation relation, [a@,a"]=1, where a(a’) is the annihilation (creation) operator of the

harmonic oscillator. One can make, however, the fluctuation of one quadrature amplitude decrease

below the vacuum-state (or the coherent state) level at the cost of that of the other guadrature.
This phenomenon, known as squeezing, is most commonly generated by the inherent nonlinearity

of the interaction involved, which is seen from the definition of the squeezing operator

S(») = expl7/2(at?—a%)], » being the squeezing parameter. Squeezing mechanism may thus be
interpreted as making pairs of correlated oscillator quanta. In most cases, the oscillator is inevitably
damped by its coupling to the reservoir, and the squeezing is degraded since the coupling introduces
the reservoir fluctuations to the oscillator. For instance, the known schemes for generating the
squeezed light employ the nonlinear processes such as the parametric amplification, or the
four-wave mixing. Usually, the interacting medium is put inside an optical cavity in order to build
up the field by increasing the interaction time. But the cavity damping destroys the quantum
correlation of the field via loss of the correlated photon pairs.

In the conventional squeezing schemes, therefore, damping has been considered to play a negative
role in squeezing. In this work, by contrast, we show that squeezing is manifested by damping

when a harmonic oscillator, a, is coupled to its reservoir, R, under indirect pumping. The

coupling strengths to each mode of the reservoir oscillators are related to the damping rate, I',, of

the oscillator by the fluctuation—dissipation theorem. We will show that the squeezing effect is
enhanced as the damping rate is increased to some degree. Thus, we call the mechanism
squeezing by damping.

In our model, the target oscillator a is, instead of being pumped directly, coupled to an auxiliary
saturable oscillator b driven by a classical field. Although the system has the inherent nonlinear

property due to the saturability of the oscillator b, the nonlinearity producing the squeezing effect
does not reveal itself without the damping. The fundamental cause of the squeezing is the
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correlation of the oscillator b and the reservoir R, This nontrivial correlation is, of course,
brought by the coupling chain R,<> a<> b Since the amplitude of the oscillator a is contributed
from both the oscillator b and the reservoir R, the (negative) correlation between &b and R, can

m.ike one quadrature-fluctuation of the oscillator a decrease below the vacuum level.

The unconventional features of the squeezing by damping can be seen from its characteristic
eondtion 2975,/g° ~1, where g is the coupling strength between the oscillators « and &, and

{ 1s the pumping strength. This condition shows that the pumping strength should be inversely
p-Hoportional to the damping rate for the optimal squeezing. This relation is in a striking contrast to
those: of the conventional schemes, where the pumping intensity should be proportional to the
damping rate.

'Ne employ the quantum-Langevin approach to investigate the correlation between and , and the
¢1ivalent master equation to calculate numerically the dynamics of the system. In particular, the
elfeciive Hamiltonian describing the novel mechanism of the squeezing by damping is derived from
the raster equation.
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I'ig 1 (a) Mean excitation number (divided by 4), the Mandel- @ value, and the phase fluctuation
Adcos¢. (b) 4X,, and 4X, as a function of 2I',/g for 2/g=2, T/ g=10.02.
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