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1. Introduction

Cellular Automata(abbreviately, CA) have been
introduced by Von Neumann and Ulam as models
of

behaviors[9]. A CA is a discrete time dynamical

self-organizing and self-reproducing
system, which consists of a uniform array of
memories called cells. The states of cells in the
the state

of a cell at a given time depends only on its own

array are updated according to a rule :

state and the states of its nearby neighbors at
the previous step.

A CA is necessary in many application areas
such as test pattern generation, pseudo-random
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number generation, cryptography, error correcting
codes and signature analysis. The analysis of the
state transition behavior of group CA was studied
by many researchers[2,6].

Although the

machines has received considerable attention from

study of nonsingular linear
researchers, the study of the class of machines
with
received due attention.

singular characteristic matrix has not
The characteristic matrix
of group CA is nonsingular. But the characteristic
matrix of nongroup CA is singular. However
some properties of nongroup CA have been
employed in several applications([4, 5, 7, 8]. In this
paper, we construct the O-tree from the O-basic

path and also construct the other trees in a given
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two-predecessor MACA. Moreover we present the
more effective methods of construction of trees in
MACA C
predecessor and complemented cellular automata

one dimensional having two
derived from C by replacing the XORs with
XNORs at some(or all) of the value of each cells.
the

Section 3 deals with the general characterization

Section 2 provides CA preliminaries.

of nongroup CA.

. Cellular Automata Preliminaries

A one-dimensional CA(1-D CA) consists of a
number of interconnected cells arranged spatially
in a regular manner. In the present work, we use
a 3-neighbourhcod 1-D CA with the cells
arranged linearly on GF(2).

The following definitions are well-known.

Definition 2.1. a) If the rule of a CA cell
involves only XOR logic, then it is called a linear
rule. A CA with all the cells having linear rules
is called a linear CA.

b) If the rule of a CA cell involves only XNOR
logic then it is called a complemented rule. A
CA with some cells having complemented rules is
called a complemented CA.

c) If all the CA cells obey the same rule, then
the CA is said to be a uniform CA ; otherwise, it
is a hybrid CA.

d) If the characteristic matrix is nonsingular,
then the CA is a group CA ; otherwise, it is a
nongroup CA.

Definition 2.2. a) A state with a self-loop in
the state transition diagram of nongroup CA are
referred to as an attractorl1].

b) The depth of a CA is defined to be the
minimum number of clock cycle required to reach
the cyclic state from any nonreachable state in
the state transition diagram of the CA[1l.

c) A state y at level [(/< depth) of the «a

1072

~tree is a state lying on that tree and it evolves

to the state @ exactly after /-cycles (/ is the

smallest possible integer for which T'y= a)[2).
d A CA
r-predecessor( 1< r<2"—1) state

state w of an n-cell is an

of a y if

T'w=y, where T is the characteristic matrix of
the CA[2].

Definition 2.3.[1] The nongroup CA for which
the state transition diagram consists of a set of
disjoint components forming{inverted) tree-like
structures rooted at attractors are referred to as

multiple-attractor CA(MACA).

Remark A. i) In case the number of attractors
is one we call single-attractor CA(SACA). ii) If a
reachable cell of MACA has two predecessors,
then the MACA two-predecessor
MACA(TPMACA). iii) The rank of T is n—1
T is the characteristic matrix of the
n-cell TPMACA. iv) The minimal polynomial of
the n-cell MACA is x“(x+1) where d({») is
the depth of a tree.

is called

where

Definition 24. Let C be a linear TPMACA
with depth & and let T be a state-transition
Then x— Tx— T%(=a) is
called the a-basic path of the a-tree in C.

matrix of C.

M. Construction of Trees of Linear
TPMACA

In this section, we present the method of more
effective construction of trees in one dimensional
linear TPMACA by using the basic path in the
O-tree.

Lemma 3.1. [3] Let X,, and X, be level ¢
states a-tree of a TPMACA C. If
j=min {k| T*X,,= T*X,}, then X,PX, is one

in the

of level j states in the O-tree of C.
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3.2. The of different

predecessors of any reachable state is a nonzero

Corollary sum

predecessor of the state 0.

Theorem 3.3. Let C be a linear TPMACA. If
the states of the state—transition diagram of C
are labeled such that S;, be the (k+1)-th

state in the [-th (/>=2) level of the O-tree of
C, then the following hold:

271

(D Z; Sp=2"" S
@21_2( S[,o GB 52,0 @ @ SI—I.O)

for all {( [ <depth) where kS denotes
S @ - @ Sk summands).
(2) For each level X ! <depth),
Sie= S0 D zilb; Sio
where b;-y by—g-- by is the binary

representation of k£ and the maximum value of %
is 2 1_1‘1.

Remark B. In Theorem 33 (1) if /=2, then
21
;0 Sl.k=Sl.0-

21-1

;0 Sl,k =0

Definition 3.4. Let C be a linear TPMACA
and the depth of C be d Let S be a

nonrechable state of the a@-tree of C. Then we
call the path

And if D2, then

B—-) TB——)..._)Y“IB(= a)

a a-basic path of the a-tree in C.

Remark C. Let C be a linear TPMACA in
Theorem 3.3 with depth d. Then

1073

Sa.07Su-1,0 5100
is a O-basic path of the O-tree in C.

Lemma 35. Let C be a linear TPMACA. Let
@; ;(resp. f;;) be the (j+1)-th state in the ¢

-th level of the a@-tree(resp. S-tree) in C. Then
ai.j@ﬂi,j =a EBB

As a corollary we obtain the following result

which is a a-basic path of the a-tree using
0-basic path of the O-tree in linear TPMACA.

Corollary 3.6. Let C be a linear TPMACA
with depth d and T be the characteristic matrix
of C. If

S407>Sa-1.07> > S1.0—0
is a O-basic path of the O-tree of C, then

(Sso D)~ (Sy1,0 B)—>—(S, Da)—a

is a a-basic path of the a-tree of C.

Example 3.7. Let C be a five-cell linear
nongroup CA with the rule <204, 240, 240, 240,
240>. Then the characteristic matrix 7T is the

following.
10000
10000
T=(01000
00100
00010
The minimal polynomial m(x) of T s

m(x) = x*(x+1) and attractors are 0 and 31.
The state-transition diagram is in Fig. 1.
(8-4-2-1-0) is a O-basic path in the O-tree. The
31-basic path in the 3l-tree corresponding to the
0-basic path is (23-27-29-30-31).
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Fig. 1 The state-transition diagram

The following theorem is an extension of
Theorem 3.3.

Theorem 3.8. Let C be a linear TPMACA
with depth d. If the states of the state-transition
diagram of C are labeled such that S 7,(resp.
S 1) be the (k+1)-th state in the I/-th level
of the a-tree(resp. O-tree) in C and

S {#= S,y + a, then the following hold:
Sti= 55D Z b 5u
where bl—l b[_z bt bl is the bmary

representation of k& and the maximum value of £

is 2 -1" 1.
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