20012 SHAF P XIS = sy

== HeA N25

stolrtio} Hlo|HE 1% AU @ A= A7

Differentiated Service for Hypermedia data
on the Web

Yoon-Jung Rhee, and Tai-Yun Kim

Dept. of Computer Science & Engineering, Korea University
{genuine, tykim}@netlab.korea.ac.kr

Abstract.
Most implementations of HTTP servers do not distinguish among requests for hypermedia data from dif-
ferent clients. Commercialization of Web site is becoming increasingly common. Therefore providing
quality of service with members paying to the site is often an important issue for the hosts. For some
uses, such as web prefetching or multiple priority schemes, different levels of service are desirable. We
propose server-side TCP connection management mechanisms to provide two different levels of Web
service, high and regular levels by setting different timeout for inactive connection. Therefore this
mechanism can effectively provide different service classes even in the absence of operating system and

network support.

1 Introduction

The explosive growth of the WWW and the ever-
increasing resource demands on the servers [3,8,9]. It
is impossible for Web server with limited resources to
process all of requests from clients by high quality of
service when requests increase rapidly. And Commer-
cialization of Web site is becoming increasingly com-
mon. Naturally, the membership users with paying fee
to the site expect higher quality of service than non-
members.

However, most Web servers today do not provide
support for differentiated quality of service. To do so
would require the incoming requests be classified into
different categories and different levels of service be
applied to each category. Apache [7], one of the most
used Web servers, handles incoming requests in a first-
come first-served manner. All the requests correctly
received are eventually handled, regardless of the type
of requests and the load on the system. Thus, it is an
interesting and important issue that the Web servers
provide different levels of quality of service to mem-
bers and non-members [3].

HTTP/1.1 standard [5] reduces latencies and over-
head from closing and re-establishing connections by

1481

supporting persistent connections as a default, which
encourage multiple transfers of objects over one con-
nection. HTTP/1.1 does not specify explicit connec-
tion-closing time but provides only one example for a
policy, suggesting using a timeout value beyond which
an inactive connection should be closed [1,2].
HTTP/1.1 must decide when to terminate inactive
persistent connections. . Current implementation of
HTTP/1.1 uses a certain fixed holding-time model.
This model may induce wasting server's resource. Cur-
rent latency problems are caused by not only net-
work’s problem but also server’s overloads having
limited resource. A connection kept open until the next
HTTP request reduces latency and TCP connection.

To provide differentiated service would require that
the incoming requests be classified into different
classes and different levels of service be applied to
each class. In this paper, we propose TCP connection
management mechanisms to provide different levels of
quality of service.

2 Issues of Persistent Connection

HTTP/1.1 does not specify explicit connection-closing
time but provides only one example for a policy, sug-



20018 BI=2FE XSS T stagy

=27 N8 H2S

gesting using a timeout value beyond which an inac-
tive connection should be closed [1,2,5 ,6]. A connec-
tion kept open until the next HTTP request reduces
latency and TCP connection. In this chapter, we intro-
duce issues of persistent connection for connection
management.

An open TCP connection with an idle-state client
that requests no data consumes a server’s resource, a
socket and buffer space memory. The number of avail-
able sockets is also limited. Many BSD-based opera-
tional systems have small default or maximum values
for the number of simultaneously-open connections (a
typical value of 256) Researches indicate that with
current implementations, large numbers of (even idle)
connections can have a detnmental impact on server’s
throughput [1,2].

In a holding-time model, while the time lasts, the
connection is available for transporting and serving
incoming HTTP requests. The server resets the hold-
ing-time when a new request arrives and closes the
connections when the holding-time expires [1,2]. The
current version 1.3 of the Apache HTTP Server uses a
fixed holding-time for all connections (the default is
set to 15 seconds), and a limit on the maximum al-
lowed number of requests per connection (at most
100). Using holding-times, a server sets a holding time
for connection when it is established or when a request
arrives.

In a caching model, there is a fixed limit on the
number of simultaneously-open connections. Connec-
tions remains open cached until terminated by client or
evicted to accommodate a new connection request
[5.6). . .

A holdmg-nme policy is more efficient to deploy
due to architectural constraints whereas a cache-
replacement policy more naturally adapts to varying
server load. A problem in the effectiveness of connec-
tion-management policies in both models is the ability
to distinguish connections that are more likely to be
active sooner [1,2].

The issues of connection management is to strike a
good balance between benefit and cost of maintaining
open connections and to enforce some quality of ser-
vice and fairness issues.

3 _Cohnection Management for Differentiated
Service

Providing differentiated services would require that
the incoming requests be classified into different
classes and different levels of service be applied to
each class. In this chapter, we present our differenti-
ated service mechanism, which manage TCP connec-
tion by means of offer different levels.

3.1 Differentiated Service Model

Our mechanism uses different Holding-time
changed from the fixed Holding-time model to provide
differentiated service for each class clients.

We classify clients (users) into upper class for
membership users and default class for non-
membership users, and provide default holding time
with default class and additional time to default hold-

-ing time with upper class. The upper class users can

reduce processing overheads and network latencies
caused by re-establishing TCP connection when hold-
ing time expires, comparing with default class users.

‘3.2 Prototype System

In this section, we. present operational scenarios of
proposed prototype system. Then, we shows its’ opera-
tional time line. Client starts to establish connection
with pertinent server by user’s ask, requests HTML
file. Server establish socket and watches incoming
connection request. After Received connection re-
quest, server establishes TCP connection with the cli-
ent. Then, it analyses user’s class, assigns proper hold-
ing-time to the client, response to requested file, and
starts the holding-time. Server must keep TCP connec-
tion during the holding-time. If it receives new re-
quests from the client restarts the holding-time. But, if
no request after the holding-time, the server closes
TCP connection with the client and releases resources,
socket and socket buffer memory having been assigned
to the client. Figure 1 shows operational time line of
our prototype mechanism.

3.3 Class Broker

In this section, we suggest Class Broker that deter-
mines proper holding-time to each client during estab-
lishing TCP connection.

The Class Broker can be implemented inside the
Web server or on membership management DB server.
The Followings are roles of Class Broker.

- Manages class table by membership
- Determines holding time of new client when the
client requests access to the Web server

3.3 Server

In this section, we describe Web server of our proposal
mechanism. We present simple algorithm for imple-
menting prototype for our proposal. Figure 2 is pro-
posed Web server prototype Algorithm.

1482



20010 SIRFS XLl FI S UH=FF N N2S

User's request - .
.« Class_Broker

5:
X
uipioH

o

Idte time

e

AR

4 opsE, .

TrhaK e

TCP Jevel Action

Fig. 1. Time line of proposed mechanism

Server()

establish server.socket
while()

if accept "SYN" from client

{
open client.socket
Holding_Time = Class_Broker(client)
time = Holding_Time
while (time)
{
read stream
if method in stream is "GET"

get filename from stream
if file exist then response requested file
else response "file not found”

}
else if method in stream is "CLOSE"

then close client socket and break
time = Holding_Time

close client socket

}
}
}

Class_Broker(client)

if client is in UpperClass
then assign (Default_Time + 'a ') to client
else assign Default_Time to client

Fig. 2. Web Server prototype Algorithm
Used methods are limited to GET message for file
request and CLOSE message for closing connection.

The followings are main operation of proposed Web
server.

- Calls the Class Broker when access request from
new clients

- Sets holding time returned by Class Broker to the
client. ,

- Terminates TCP connection with the client when
holding time expires.

We expect that this mechanism supports balanced
service reducing latencies and overhead by supporting
persistent connections and server’s overloading by
connection management. The prototype of this mecha-
nism is presently under development with java based.
Current implementation focuses on compare three
models, fixed holding time model, upper class and
default class of our mechanism.

4 conclusions and future work

We propose server-side TCP connection management
mechanisms to provide two different levels of Web
service, high and regular levels by setting different
timeout for inactive connection. It is impossible for
Web server with limited resources to process all of
requests from clients by high quality of service when
requests increase rapidly. It is an important issue that
the Web servers provide different levels of quality of
service to members and non-members. We present the
mechanism that sets different holding time to each
client (user) by classes and provide fast access of hy-
permedia. This mechanism can effectively provide
different service classes even in the absence of operat-
ing system and network support. As future works, we
will analyze and evaluate performance of the mecha-
nism.

Reference

1. Y-J. Rhee, N-S. Park, T-Y. Kim: Heuristic Connec-
tion Management for Improving Server-side Per-
formance On the Web, in Proc Workshop on OHS6
(Texas, May 30, 2000), LNCS-1903

2. E. Cohen, H. Kaplan, J. Oldham. Managing TCP
Connections under persistent HTTP. 1999 Elservier
Science

3. J. Almedia, M. Dabu, A. Manikntty, P. Cao: Provid-
ing differentiated levels of service in web content
hosting, in Proc. 1998 Workshop on Internet Server
Performance Madison (Wisconsin, June 23, 1998)

4. L. Eggert, J. Heidemann: Application-Level Differ-
entiated Services for Web Servers, in World Wide
Web Journal, vol 3, 1999



2001 SR ELP XSS £ SaLH=FF H8A H2S

5. T. Berners-Lee, R. Fieding, J. Gettys, J.C. Mogul,
H. Frystyk, L. Masinter, and P. Leach: Hypertext
Transfer Protocol — HTTP/1.1 RFC2616 Jun 1999.
http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf

6. M. Elaud, C.J. Sreecnan, P. Ramanathan and P.
Agrawal: Use of server load to dynamically select
connection-closing time for HTTP/1.1 servers,
Submitted for publication, March 1999.

7. D. Robinnson, Apache Group: APACHE - An
HTTP Server, Reference Manual, 1995.
http://www.apache.org

8. J. Mogul: Network Behavior of a Busy Web Server
and its Clients, in Research Report 95/5, DEC
Western Research Laboratory, October 1995

9. J. Mogul: Operating System Support for Busy Inter-
net Servers, in Proc. Of the Fith Workshop on Hot
Topics in Operating System, May 1995

1484



