thetzl Al 8tel 20013 FAst=isl=2Z B pp. 468~474

KSME 01F223

Numerical Simulation of Shock Propatation by the
Finite Difference Lattice Boltzmann Method

Ho-Keun Kang*, Michihisa Tsutahara**, Jeong-Hwan Kim*, Young-Ho Lee*

Key Words: finite difference lattice Boltzmann method(XH&Z AHE-=7H), the BGK model(BGKE
), compressible fluid(EFA A, shock wave(FZ3T}), wave reflection(3FA}3)

Abstract

The shock process represents an abrupt change in fluid properties, in which finite variations in
pressure, temperature, and density occur over a shock thickness which is comparable to the mean free
path of the gas molecules involved. The fluid phenomenon is simulated by using finite difference
lattice Boltzmann method (FDLBM). In this research, the new model is proposed using the lattice BGK
compressible fluid model in FDLBM for the purpose of shortening in calculation time and stabilizing
in simulation operation. The numerical resuits agree also with the theoretical predictions.

1. Introduction

In recent years, the lattice gas automata
(LGAM? or the lattice Boltzmann method
(LBM) ™ has received considerable attention
as an alternative numerical scheme for
simulating complex phenomena. The finite
difference lattice Boltzmann method (FDLBM)
“ is one of the computational fluid mechanics
which has been developed from the lattice
Boltzmann method. In LBM, fluid is regarded
as gathering of many particles repeating
collision and translation (movement), and the
motion of macroscopic fluid is expressed by
calculation of these two motions of particles.

Although by using LBM & FDLBM until
now, authors examine the flows such as the
natural convection [5], the density-stratified
flows and the unsteady shock wave [6], the
thermo-hydrodynamic model is developed and

has been verified.
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However, LBM has many problems such as
becoming unstable numerically to a heat flow
problem or a high Reynolds number flow. The
fluid phenomenon is also calculated by using
the FDLBM, and the validity of this technique
has been examined. But, the method is proven
that there is a problem enormously taken the
calculation time, when the application to flow
of high Reynolds number and boundary fitted
coordinate system is examined.

In this research, the new model is proposed
using the lattice BGK compressible fluid model
in FDLBM for the purpose of shortening in
calculation time and stabilizing in simulation
operation.

2. Foundation of FDLBM

The lattice BGK model in the finite
difference lattice Boltzmann method which used
until now in the collision term of fundamental
equation has been expressed as
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Equation (1) has the Taylor expansion of
lattice Boltzmann equation, and has a form
equal to the approximate Boltzmann equation
which adopts the first term.

The dynamics of the fluid can be described
by the distribution function obeying the lattice
BGK equation (1) and the
variables are given by the

Macroscopic
equilibrium
distribution function.

Here, the fundamental physical variables are

the density p, the momentum pu, and the

internal energy e, and they are defined as
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In Eq.(1), the relation between coefficient of
the kinematic viscosity v deduced and the
single relaxation coefficient ¢, when the
Navier-Stokes equation is induced, becomes
¢~ .
Here, when the finite difference calculation of
Eq.(l1) is used, if the time development is
expressed by the Euler method, the equation is

written as
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In Eq.(5), the coefficient which depends on the

collision term is A¢#/¢, when we consider the
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collision term of right side.

As well as the relation of 1/¢ < 2.0 which
is stability condition of the collision term in
LBM, the At < 2.0 s
established on this coefficient in FDLBM.

In FDLBM, ¢ is very small in the high
Reynolds number on the relation between

relation of

coefficient of kinematic viscosity and single
relaxation coefficient ¢ ~ v. Also, from the
stability condition of the collision term, A¢
must be taken small in order to satisfy the
condition of the collision term. Therefore, the
enormous calculation time is required to ensure
appropriate calculation results.

3. Proposal of a New Model

Here, a new model is proposed in order to
solve the problem described as the stated
above.

To begin with, we consider that the finite
difference lattice Boltzmann method regards as
one scheme for deducing the Navier-Stokes
equation. we also consider that the relation
between coefficient of the kinematic viscosity
v and single relaxation coefficient ¢ is made
to convert by disregarding the physical
meaning of the fundamental equation, and

adding some terms to the fundamental
equation.
As the concrete method, the Taylor

expansion is done to deduce the Navier-Stokes
equation, when considering the derivation
process of the viscosity term in LBM, then we
deduce the viscosity terms by adoption in the
secondary term.

From this fact, we note that the difference
between LBM and the fundamental equation,
which derivate the viscosity coefficient from
the conventional FDLBM, is the existence of
the term of the secondary order. Then, the
term of the secondary order should be
introduced into the equation of the conventional
FDLBM.

Here, the term of the secondary derivative in
the differential equation means the diffusion,
and, in the point of the viscosity, it is
regarded that the term of the secondary order
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is effective for the operation of the viscosity
coefficient. Therefore, we can operate that the
relation between the viscosity coefficient and
the single relaxation coefficient converts by
adding the term of the secondary order. Then,
we intend to carry out the speed up, which is
difficult in the conventional FDLBM model.

As a term of adding secondary order, the
numerical calculation should be carried out by
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In short, we transform the fundamental

introducing the term

equation (1) as follows:
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Here, the added term is similar to
a_ f
—aca, T' and it can be obtained

when the govermning equation of the flow is
deduced by the Chapman-Enskog development.
Substituting Egs.(2),(3) and (4) into Eq.(6),

and taking terms up to the first order &, we

can obtain
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Here, the added term is transformed with
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When the ’I‘aylor expansion of LBM is done
up to the second order, the equation is written

as
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The form equal to that of the equation
which removed the term of the second

-470-

differential in the time, when it compared with
the equation of LBM if the parameters are put
with 7=1.0 and @=0.5. By conducting such
it is possible to convert the
of the

kinematic viscosity and the single relaxation

conversion,

relationship  between  coefficient

coefficient from ¢ ~ v to ¢—a ~ v in
FDLBM.

By these procedure, the single relaxation
coefficient ¢ becomes ¢ — a in the flow of
the high Reynolds number, and the proposed
new model of FDLBM becomes possible to
calculate by the fixed value of ¢ which is
taken in the high Reynolds flow. Also, it
becomes possible that calculation of Af can
easily or stably simulate up to large value,
which A#/¢ < 2.0 is a restriction on the
collision term in the conventional FDLBM

model.
4. The Calculation Speedup

In this section, we consider whether the
speedup becomes by
the the
viscosity coefficient v and the single relaxation
coefficient ¢ by adding the term in Eq.(6).

To begin with, there are large difference
between the proposed FDLBM model and the
conventional FDLBM model, when the high

possible
between

calculation

converting relationship

Reynolds number is considered. In the
difference, when it is made to be Re — oo,
the relaxation time is ¢ — 0.0 in the

conventional FDLBM, whereas that of proposed
model is ¢ — a.

this fact, satisfy
At/ ¢ 2,0 which is a condition of the
coefficient depending on the collision term,
stability could not

From in order to

though the calculation
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Fig.1 Simulated flow field in a shock tube
(2D21V)

operate if &¢t— () is not given in the

conventional FDLBM, the time becomes

At— 2.0 a in the proposed FOLBM.
Therefore, we can easily promote the

calculation stability in At to some extent size.

5. Numerical Results

To examine characteristics of shock wave
and reflection wave and verify the proposed
FDLBM, we use both the conventional model
and the proposed model.

The shock propagation process represents an
abrupt change in fluid properties. Shocks also
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Fig.2 Flow field in a shock tube simulated
with 2D21V model by the conventional FDLBM
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Fig.3 Flow field in a shock tube simulated
with 2D21V model by the proposed FDLBM
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Fig.5 Results of the speed of shock (by the
proposed FDLBM)

occur in the flow of a compressible medium
through ducts or nozzles and thus may have a
decisive  effect on these flows. An
understanding of the shock process and its
ramifications is essential to a study of
compressible flow.

To begin with, we examine a shock tube
flow. The shock tube is a device in which
normal shock waves are generated by the
rupture of a diaphragm  separating a
high-pressure gas from one at low pressure.
After rupture of the diaphragm, the system
eventually approaches thermodynamic
equilibrium, with the final state in the
close-end tube determined from the first law
of thermodynamics. With no external heat

transfer, the total internal energy of the gases

at the final state is equal to the sum of the
internal energy of the gases initially present on
either side of the diaphragm.

However, of primary interest is not the final
equilibrium state of the gases, but the
transient shock phenomena occurring
immediately after rupture of the diaphragm.
Upon rupture of the diaphragm, a normal
shock wave moves into the low-pressure side,
with a series of expansion waves propagating
into the high-pressure gas.

The conceptual scheme of shock tube is
shown in Fig.l. The pressure distribution is
also illustrated.

The speed of shock ¢, is defined as
Cs= Ms ag (10)
where M, is the shock Mach number and a;

is explained later.
The fundamental equation of shock tube can
be written as

Py _
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where aq, ay4 are the front sound velocity

and the rear sound velocity of shock wave,
respectively.
As the initial parameters, we set the initial

pressure ratio of P,/P, at 7.0, the time
At=0.01 and the temperature in both
ey=¢;=0.85, and then, the
M,=1.645.

shown in Fig.2

chambers at
shock Mach number becomes
The pressure distribution is
and the pressure ratio over 7.0 is not

completed by using the conventional FDLBM.
With the proposed FDLBM, we put the
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Fig6 Unsteady shock wave passing through the Fig.7 Unsteady shock wave passing through
rectangular column. The shock Mach number the circular cylinder. The shock Mach number
M, = 2.215, initial pressure ratio P,/P,=25.0 M, =2.043, initial pressure ratio Py/P,=15.0
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initial pressure ratio of P,/P, at 25.0, the
time Af=(.1 as initial condition, and the
shock Mach number M, =2.215, and the flow

field is shown in Figs.3(a) ~(d). Here, we
know that the proposed model is stably
completed even in the pressure ratio over 3
times from the conventional model in the
calculation. Also, from Fig.2 and Fig.3, we are
certain that it is possible to shorten the
calculation time over 10 times further than that
of the conventional model, when we simulate
by using the proposed new model.

In Fig.3(a), the shock wave are resolved by
5 lattices, and there is not the vibration which
often observed in the wave surface back.
Figure 4 shows the relation between the initial
pressure ratio and the pressure of the front
and rear of shock wave. In this case, we
obtain that an error is within 0.02% and the

" results agree with the theoretical predictions.
Figure b shows that an error between the
theoretical shock speed and that measured
from numerical result is within 1.24%, and
the both agree with each other.

In Figs.6(a) ~(d), the unsteady shock wave
passing through the rectangular column which
put in the low-pressure gas chamber is shown
as time step go on. The initial pressure ratio
Py/P,=25.0, the time Af=0.1 and the
shock Mach number M,=2.215 are set, as

an initial condition. Shock wave and reflected
wave have also been well expressed.

In Figs.7(a) ~(d), the unsteady shock wave
passing through the circular cylinder is shown.
The radius is made to be the 25 lattice nodes.
As an initial condition, the initial pressure ratio
P,/P,=15.0, the time A#=(.1 and the

shock Mach number M,=2.043 are set. The

numerical results are well expressed the

unsteady shock wave and the reflected wave

as time step go on.

6. Conclusions

By solving the lattice BGK compressible
fluid model using the difference, we showed
that the calculation of flow field (strong shock
wave) where exists large pressure ratio is
possible,

The new model is also proposed in the finite
difference lattice Boltzmann method for the
purpose of the stabilization of calculation and
the shortening the calculation time.

With the shock tube, we examined the
theoretical and the numerical results. In this
calculation, we obtained the numerical results
which agree with the theoretical predictions.

Finally, we expressed well the shock wave
and reflected wave through some examples.
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