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Finite Element Analysis for Three Dimensional Welding Processes
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Abstract

We propose an implicit numerical implementation for the Leblond’s transformation plasticity constitutive
equations, which are widely used in welded steel structure. We apply generalized trapezoidal rule to integrate
the equations and determine the consistent tangent moduli. The implementation may be used with updated
Lagrangian formulation. We test a simple butt-welding process to compare with SYSWELD and discuss the

accuracy.

Nomenclator
o : Jaumann stress rate
¢"  :thermal strain rate

I : 2-nd order identity tensor
II  :4-th order identity tensor

£*  : thermal strain given

n : the rotation neutralized variable
® : the factor for the memory effect
o’ :Yield stress

L :tangent stiffness
wes - deformation gradient
«sg - Totation neutralized stress

L : isotropic elastic modulus
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1. Introduction

Leblond[1] proposed a transformation plasticity model
on the theoretical foundation, transformation plasticity is
a consequence of the homogefiization process without
postulating arbitrary extra plastic strain. Since it has
reasonable than
SYSWELD selected this model for finite element

more other empirical models,
analysis of welding process in spite of its complexity.
SYSWELD uses explicit multi-step method to integrate
the constitutive model[2]. We propose a new implicit
integration method and corresponding  stiffness
calculation method for the Leblond constitutive model.
More detailed procedure are omitted because of the

limitation of space available.
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2. Numerical implementation of Leblond's
transformation plasticity constitutive
equations

We use the following isotropic thermo-elastoplastic

rate form constitutive equation.

&' =L:(E-4-3*) ¢

where

2
L=2pll+ x——u|I®I
g [ 3”] @

(L= 8,8, 46,5, )+(x -2 )pib)

Leblond[1] proposed a transformation plasticity

constitutive model for isotropic hardening case as

follows
F= (%oc) 3)
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where the first term of the right-hand side is to be
replaced by 0if z<0.03;

T =(—)2cT volz? (6.6)
z z

If =0’
=P

g =3 g (7.8)
20

el =&? (7.b)

FF =5 - i5F v lzd (7.)

z z

where f(z), g(z), h(—o—-;-) are correction functions
o

with respect to experimental result. Yield stress, o”

depends upon yield stress of each phase and proportion

of each phase (o;,07,2). We can rewrite (6.a~c) as

follows.
=P
238 (8.3)
2 o
where 57 = (12257 (8.b)
(Eleﬁ)

Linearized updated Lagrangian weak formulation can
be expressed as in the following equation for the

negligible inertia case.

aw ow,
J' (L,]k,de,‘,g——-(dem Oy + O dg’"’)—ax_.]

Odu; ow ' ©
+ 0, —L—1)d0
ox, Ox;
where
odu Odu;
a7 zdo- -dg,,0,,—0,de,; + 0, — o,
and da; = Ly, de, (10)

To implement (10) we must determine how to

-337-



calculate the tangent stiffness, L' and how to integrate
the rate form constitutive equations and update other

state variables.

First, we explain the integration and update state

variable. We separate the deformation gradient, F,,, by

n+l

Hoger and Carlson method[3] and calculate the rotation
neutralized strain increment by [4] and [5] in the
If we set

integration of constitutive equations.

- 3q . . . .
N= 3F rotation neutralized plastic strain rate can
g

be expressed as i = EE ?N . Using trapezoidal time

integration rule, rotation neutralized stress, G,,, is

integrated as

8,y =65, -J6puar[(1- BEPN, + BEL,N,.,] (11)
where

6%, =0, +L:InU,,,

12

Ly # +zM,a2]AGI
A8=6,,,-0, (13.2)
Ae=inU,,, =2U-1I)U+1)" (13.b)

Other state variables are also integrated by the same
trapezoidal rule. We can find out a non-linear equation
which has only one unknown state variable, effective
(Eltﬂ )n+1
mathematical treatments. Equation (14) is the equation

plastic strain of phase 1, after some

forthe & <& ” and z<0.03 case.

Gl((s )u+1) {

(81 n+l

g(z ..+l)
(A, +4,)+4,}

g(zu+l)

x[1+3p(1 z“;fi;: jnol) ﬂAs}

]

- =B
= Oy

(14)
where
Z(a, —az)zm Inz,,,
B(l-2,,)
{6,,—6,~(1- )40, ]},
A,=5,+(1- AT,

() +(1-B)ET ),
B

4, =

(15.a,b,c)

and 4, =

The problem of integration of objective stress rate
reduces to solving problem of the non-linear equation.
Now, we can find out effective strain increment of phase
1 by solving the nonlinear equation, (14) applying
Newton’s method. And then we update other state

variables.

Second, we explain how to determine the tangent
stiffness matrix corresponding to the stress integration
method. We set the time integration coefficient § equal

to 1 for the unconditional convergence.

dé=1I':dé (16)
where

-

L‘-a —fyAtN@ —1/_,uAt""

(17

After some mathematical treatments, for the

& < &” and z<0.03 case, we can write the derivative of

equivalent plastic strain as

n+l 18
aAs =6, :N (18)
where
C,+C,C,
¢ (1+3uC, (19)
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(20.a,b,c)
a(e_leﬁ )n+1

The rotation neutralized consistent tangent moduli can

be expressed by
. . 3 L.
L=L[-2(¢-n)MOM 1)
where
N . 2 .
=2y II+(K—§—;1 JI@I (22)
W o=(1-3m)u (23)
EP _EP
p=lfm 5] (24)
6n+l
M =2uN (25)

Finally, stress increment and tangent stiffness matrix
can be calculated by transformation of the rotation
neutralized variables. We can also apply this procedure

to other cases.

3. Numerical example

We choose a simple butt-welding process of steel
structure for comparing the accuracy and the efficiency
of our implementation with SYSWELD. Assuming two-
dimensional plane strain state. A finite element analysis
was conducted and Fig. 1 show the Von-Mises stress
distribution when the structure are fully cooled. ‘We see
that our result is in an excellent agreement with
SYSWELD result. We have shown the accuracy by

comparing the results but not compare the efficiency

because of the difficulty of computation time estimation.
Three-dimensional finite element analysis will be

discussed at the Conference.

(a) The present result

FLLN

SY,WELD+ |

CONTOURS

‘Von mises sress
Time 299.997711

(b) SYSWELD result

Fig. 1 Von-Mises stress distribution of the test example.
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