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HIGHER ORDER SINGULARITIES AND THEIR ENERGETICS IN
ELASTIC-PLASTIC FRACTURE
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Abstract

The higher order singularities[1] are systematically examined, and discussed are their complementarity relation with
the nonsingular eigenfunctions and their relations to the configurational forces like J-integral and M-integral. By use of
the so-called two state conservation laws(Im and Kim[2]) or interaction energy, originally proposed by Eshelby[3] and
later treated by Chen and Shield[4], the intensities of the higher order singularities are calculated, and their roles in elastic-
plastic fracture are investigated. Numerical examples are presented for illustration.

v integral[2] may be written as:
1. Introduction

The purpose of the present work is to review the J =I,-(W”1_ti“i,1)ds M
complementarity relationships among the eigenvalues in M= Ir (Wn, - tu,, )xds Q)
an eigenfunction expansion for a generic isotropic wedge

together with our recent applications to wedge and crack

problems [2,5,6,7). Furthermore, we demonstrate their where n, is the component of unit outward normal on
application for characterizing elastic-plastic cracks via the contour [; W and f, indicate the strain energy
high order singularities and their complementary density and the traction component, given as

eigenpairs, which are nonsingular terms. W =Cytibn /2 and t,=0oyn,.

Consider two independent elastic states “A” and “B”
for the plane strain problems. We suppose another elaétic
state “C”, which is obtained by superposing the two
equilibrium states “A” and “B”. Then the path-

2. Governing Equations and J- and M-
Integral

independent integrals J and M are written as
For the plane problem, the J-integral and the M-
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where the superscripts “A”, “B” and “C” indicate the

aforementioned elastic states, and J(**) and M*4%

are given as

ai?
(AB) _ 4.8 A i B
M = [ [Ciamti €ann, (1] +1]

n

A
Z )x,ds (5)

B

At Lt
JAB = { [ Cimti oty = (1] dc] +t]—L)jds  (6)
) 1 1

The integrals J** and M™%’ result from the
mutual interaction between two elastic states “A” and

“B”. These are

equilibrium states, since the area integral version of these

conservation integrals for two

contour integrals vanishes identically for the domains
with no singularities

We briefly summarize the structure of the
asymptotic solutions in the form of eigenfunction series
for the two-dimensional wedge problem. The
eigenfunction expansion for the stress and displacement
components for the generic wedge may be written in the

following power type function of z=x,+ix, and

T=x—ix, [2]:

2
oty) = Re[ & B, & (CL (Apgi(2)+ TiaZel( 7))
+ C((l:':-)z)n(‘/_laﬂcg;(z) + fng:(f))}]

7
1 2
g = 2 Re[%; ﬁné{CL”’(pLL”’gn(Z)
+quZ8(2))+ Cly (P g (2 ) + T uzg(Z D)
(8)

with g/ (z) = z°"and M being the shear modulus;

the non zero components of A5, 7 45, py and g, :

A=Ay =idy, =1 Ay, = Ay =2,
Iy, =-Tyy =-ily, =_1’P§;n) =-ip§7" =-1,(9)

Pgn) ="Pg;n) =3-4v™, g, =g, =1

where &, is an eigenvalue and v is Poisson’s ratio;

Ck (671) >

eigenvector; f, = B(J,) represents the load parameter

C,. , short for is the corresponding
or the intensity of the elastic field associated with
eigenvalue J, . Note that g, is real for areal &, , butit

is, in general, complex for a complex J, . For a complex

S,

., it is self-evident from the expression (10) that its
conjugate 5"" also belongs to the eigenvalues. For
clarity, we assume that the imaginary part of complex
8, is positive in the expression (10) since a complex

eigenvalue §, and its comjugate gn lead to the same
eigenfunction. The superscript “(m)” indicates the m-th
sector.

For an arbitrary eigenvalue &, in equations (7) and
(8), we first define its complementary eigenvalue &; in

the M-integral sense such that

55+8,=-2 (10)

It has been shown that & is also an eigenvalue for
a givenr wedge [2, 8]. For cracks around which the J-
integral becomes path-independent, in a similar way we
can define the complementary eigenvalue &; in the J-

integral sense for an arbitrary eigenvalue J;:

+8, =1 1)

Equation (10) can be utilized for finding the
intensities of the singular terms in the eigenfunction
expansion for the re-entrant vertices of thin films [2] and

adhesive lap-joints [5]. Recently it is shown that equation



(11) together with (10) is useful for decomposing local
three dimensional crack tip field under mixed mode to
In addition
to the recent results of Ref. [2,5,6], in the present

obtain the individual stress intensities [6].

presentation we will show that equation (10) or (11) may
be applied for computing the intensities of the high order
singularities [1] and the nonsingular terms as well for
elastic-plastic crack tips. This enables us to
characterize the elastic-plastic cracks via these additional
terms together with the inverse square root singularity.
Specializing equation (7) for elastic-plastic cracks with

plastic zone removed, we obtain the expressions:

o-ij .—_...+ﬂ_zr—3/2ﬁj(0'_3/2)+ﬂ_lr—lf;_j(e,_])
+ (K, /27 i, (0-1/2)+ ,6,8),
+B,r' £,(0,172)+ Brf (6,1)+-- (12)

where K, and p, represent the stress intensity factor

and the
aforementioned two-state J- or M-integral with the aid of

T-stress, respectively. Utilizing  the

finite element analysis, we calculate the intensities S;

as well as K, for elastic-plastic crack tip. The result

shows that the contribution to J-integral comes from
each complementary pair of eigenfunctions, defined by
equation (11), in addition to the inverse square root

singularity, whose complementary pair is itself or 8,=

6, =—1/2.

For the elastic-plastic plane problem, the J-integral
and M-integral can be written as

T =y 30 13

n=l
M =3 M5 (14)
n=0

where J*%) and M%) are the two-state

conservation integrals[2], which provide the method for

calculating the intensities of higher order singularities.

For the eigenvalue &, in plane strain crack problems,
we have complementary eigenvalue &, =—/—3J, inthe
J-integral sense and &) =-2-0, in the M-integral

. C “
sense wherein J*%/ and M%) retain the path

independence. J,=J(-1/2,—-1/2) is the classical

expression of the J-integral for elastic crack problem

calculated with §, =-1/2. The summation 3 J(on i)

n=l
and iM (4%) are the J-integral and the M-integral
n=0

contribution due to each of the eigenvalues &, and their

conjugate eigenvalues &¢, respectively. J,, related to
the translation of &,=-1/2 singularity, means the

. . e c
extension of the crack, and the remains terms Y. .J(%

n=1

are associated with translation of the higher order

singularities. Furthermore 3 M%) s identically

n=g
zero in the absence of the plastic zone, but increases in
proportion to the size of the plastic zone due to the

increasing influence of the higher order singularities.

3. Numerical Results and Conclusion

For a numerical example, we choose a homogeneous
isotropic material with the properties: E =7/GPa ,
v=033 and o, =303MPa . For the model of this

study, we select single edge notched tension(SENT)
panel(see Fig. 1) and the Mode I loading is applied on
the boundary of the model(see Fig. 2). The ycalculation
was processed with a power-law hardening material in a
uniaxial stress-strain law that is the plastic part of the
Ramberg-Osgood formula. We choose m=10 and
a =1.0 for numerical computation. The package code
ABAQUS is used for the finite element solution. Fig. 3
and 4 show that the computed J, J, and each value

2386-



.55 g
of JI™ as well as M and M'®%’ increase as

the maximum plastic zone size increases. From these

(1/2,-3/2)

figures we may draw the conclusion that J and

MCY273/2) have the most dominant effect on

X c o ¢ .
SO and 3 M%) | respectively.

n=1 n=0
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Fig. 1 The SENT panel under plane strain
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Fig. 3 Maximum radius of plastic zone and computed
J-integral and two-state J-integrals versus

applied loading
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Fig. 4 Maximum radius of plastic zone and computed
M- and two-state M-integrals versus applied
loading v



