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Abstract

Development of adiabatic shear bands in thermoviscoplastic materials is analyzed via high resolution
scheme. Presented here are our initial results, which are for one dimensional elasto-viscoplastic materials. As
the mesh-sizes are getting small, the convergence result of plastic strain rate is obtained using elasto-
viscoplastic materials. The further study cases will be reported at the presentation in the framework of the one
and the two dimensional shearbanding, respectively. They will be compared with finite element solutions,

and the advantage of the scheme will be discussed.

Nomenclature

o : stress
x : coordinate
t: time
p : density
v: velocity
¢ : specific heat
0 : temperature
" k : conductivity
£ : viscoplastic strain rate
4 : shear modulus
L : length of specimen
B : softening coefficient
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1. Introduction

Adiabatic shear banding is a major damage
mechanism in ductile materials undergoing rapid
deformation subjected to impact loading. This

phenomenon is explained by thermal softening and the
lack of time to diffuse away the heat caused by plastic or
viscoplastic deformation. In the course of abrupt
dynamic deformations, the thermal softening in 2 local
region becomes greater than the hardening, and
instability then gives rise to initiation of shear band. As
the critical time is approached, the increasingly localized
narrow band leads to a sudden drop of the stress
sustained by the material, which is called stress collapse.
Then the material outside the band undergoes elastic
unloading and plastic deformation is localized on the
band[1,2,4]. The width of this shear band is often
extremely small compared with the body scale, and then

analysis of shear band development manifests itself as a
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typical multi-scale problem, which involves two different
scales of the shear band thickness and the body
dimension under consideration. As a consequence,
numerical computation of shear band development via
finite element [4] or meshfree methods [3] is very
challenging, particularly in terms of capturing the high
strain gradient and the thickness of the band.  This is
due to the limitation of resolution capacity of such
methodology and to numerical instability. In this work,
we apply the high resolution scheme for analyzing
adiabatic shearbanding, and ultimately we will compare
the solutions with those from FEM to examine the
effectiveness of the scheme in terms of accuracy and
solution time. Preliminary results are described for one
dimensional rigid viscoplastic material in this paper, and
further results on elastic-viscoplastic materials will be
reported at the Conference together with pertinent
remarks on the overall efficacy of the high resolution

scheme applied to the shear band problems.

2. Governing Equation

Consider the one-dimensional shearing of infinitely
long plane strain block, as depicted in Fig. 1. We
assume that the top and the bottom of the block are
subjected to opposite uniform horizontal velocities such
that it undergoes shear deformation. Elasto-viscoplastic
material behavior is assumed and the material properties
are taken to be constant for simplicity. Then the equation
of motion and the energy equation for deformations of

thermoviscoplastic materials are written as
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Fig. 1 One-dimensional shear band problem

For application of high resolution scheme, these

equations are recast into the following conservative

form:
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For the high resolution scheme to be employed, we
choose the central scheme proposed by Kurganov and
Tadmor{S]. The major advantage of the central
schemes is that they do not need any Riemann solver
unlike the

Kurganov and Tadmor’s central scheme [5] is the recent

Godunov type upwinding approaches.
modification of Nessyahu-Tadmor scheme[6], which
may be thought of as the extension of the first order Lax-
Friedrichs scheme{7]. One of its main ingredients is that
it admits a particularly simple semi-discrete formulation,
which numerically implemented in a
straightforward manner with the aid of the ODE
Furthermore,

needed for

can be

integrators like Runge-Kutta methods.
no characteristic  information is
implementation other than the local wave speed, which is
given as nothing but the elastic wave speed for an

elastic-viscoplastic material.
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Note that equation (4) now takes the standard

convection-diffusion type of the form:

%u(x, t)+§x-f(u(x, 1))=

%)
0
> Q(u(x, t),u,(x, t))+ R(u(x, t))
where,
pv -c 0 0
u=|pcfi{, f=| 0 |, Q={k8,}{, R=| c-¢7
c -y 0 -2u-€%

For elasto-thermoviscoplastic materials, the flow stress
o depends on the strain hardening and the strain rate
hardening, and temperature.  We neglect the strain

hardening for simplicity and take the following form,

1 e
o-:E{EJ 0'0(1“/3(9_90» ®

which depicts the power-law rate hardening and a linear
thermal softening.

For this type of equation, the semi-discrete form of
Kurganov-Tadmor scheme is written as (see [5] for
details)
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3.

Numerical Result

We utilize the material properties given in Table 1 for

numerical computation:

Table 1 Material properties

P 7833 kg/m’
¢ 465 J / kgK
k 54W I mK
é 5) 0.001/s

m 0.01

G, 1250 MPa
B 0.0016

4, 293K

H 100GPa

For the initiation of shear band, the

temperature perturbation is employed.

8

imperfection =
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where the perturbation temperature 8, is2K and L is
0.5mm .

At x=0, which is the center of shear band, the
plastic strain rate is plotted in Fig. 2. In the figure, as the

mesh-sizes are getting small, the converge results of

plastic strain rate are obtained.
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Fig. 2 Plastic strain rate at the shear band

4. Result

In this study, via Kurganov-Tadmor high resolution
scheme, convergent “post-behavior” result of 1-D
elastic-viscoplastic adiabatic shearband problem has
been obtained. And we can get comparison results with
FEM to seek advantages of using high resolution scheme
in further study.
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