Correlation between the Homogeneity in the Microwave Surface Resistance and Crystal Structures of Large YBa₂Cu₃O_{7-δ} Films Sang Young Lee^a, J. H. Lee^a, J. Lim^a, Junghun Lee^a, Y. B. Ko^b, J. H. Yun^b, H. G. Kim^b, S. H. Moon^b and B. Oh^b ^a Department of Physics, Konkuk University, Seoul 143-701, Korea ^b LG Electronics Institute of Technology, Seoul 137-724, Korea Large epitaxially grown YBa₂Cu₃O_{7- δ} (YBCO) films with 50 mm in diameter were prepared on MgO, annealed MgO and CeO₂-buffered r-cut sapphire (CbS) substrates, for which correlation between the homogeneity in the microwave surface resistance (R_S) and the crystal structures was studied. An automated measurement system based on a sapphire-loaded TE_{01 δ} mode cavity resonator was used for investigating the positional dependence of the R_S at low temperatures. The R_S of YBCO on MgO appeared significantly better than that of YBCO on CbS throughout the measured temperatures, with the values of 340 μ Ω, 600 μ Ω and 1.03 mΩ at 45 K, 60 K and 77 K, respectively, for YBCO/MgO at 19.6 GHz. The positional dependence of the R_S appeared strongly correlated with that of the in-plane alignments of YBCO grains in each YBCO film, with low R_S observed at the positions where the full width at half maximum of the Φ -scan of (113) peak appeared small. However, no such correlation was observed between the R_S and the degree of the c-axis orientation of YBCO grains in each YBCO film. Our results show that the in-plane orientation of YBCO grains is one of the most important structural factors to be controlled to reduce the R_S of YBCO films and to improve the homogeneity in the R_S of large c-axis oriented YBCO films. Effects of annealing of the MgO substrate on the homogeneity in the R_S of large YBCO films are also discussed. keywords: Microwave surface resistance, Crystal structure, YBCO, Homogeneity