[23 - S09] ## Adsorption and Desorption of Acetylene on Ge(100) Ansoon Kim, Jae Yeol Maeng, Jun Young Lee, Sehun Kim* Department of Chemistry and School of Molecular Science (BK21) Korea Advanced Institute of Science and Technology The adsorption and thermal desorption of acetylene on Ge(100) have been studied in ultrahigh vacuum by Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD). Acetylene is found to chemisorb and to desorb molecularly on Ge(100) via a mobile precursor in a different way with $Si(100)^{(1)}$. TPD measurements show two molecular desorption features, indicating two adsorption states. For desorption kinetics, C_2H_2 desorption follows a first order reaction and the activation energies for desorption are 30.6 kcal/mol for α_1 state and 32.9 kcal/mol for α_2 state at saturation coverage. The low desorption activation energy allows C_2H_2 to desorb prior to significant dissociation which is a major pathway in desorption from Si(100). The angular distribution of C_2H_2 desorption is peaked at surface normal. The results will be discussed on the basis of bonding geometry of C_2H_2 on Ge(100).