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Abstract

For companies assembling end products from sub assemblies or components, MRP (Material Requirement Planning) logic
is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of
operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible
schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present
a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine
assignment, operation sequences and the levels of the operations relative to final operation. The relative operation level is the
control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job
hierarchy. In order to revise the fixed relative level which solutions are confined to, we apply large step transition in the first
step and GA in the second step. We compare the genetic algorithm and 2-phase optimization with several dispatching rules in
terms of tardiness for about forty modified standard job-shop problem instances. '
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1. Introduction

The so-called MRP (Material Requirement Planning) is
frequently used to synchronize the production activities of a
multi-stage manufacturing system. It determines the
appropriate quantities and due dates of each component to be
produced or procured and releases production or purchase
orders to shops. Since MRP does not consider the capacity of
the shop level resources and utilizes a fixed lead-time, it
frequently generates infeasible plans. So in a well run MRP
shop, the MRP plan is usually reinforced by other means such
as detailed capacity planning and scheduling tools. In spite
of such effort, since the job shop environment is so complex
and the number of jobs so large, the machine loading and
operation sequencing decisions are frequently done using
dispatching rules based on the due dates and processing times
of the operations.

Finding an optimal solution in a reasonable time for
practical sized scheduling problems with multi-level job
structures still remains to be resolved and search solutions
such as genetic algorithm, simulated annealing, tabu search
and fuzzy logic are increasingly used to cope with large
computational requirements posed by realistic scheduling
problems(Roach and Nagi, 1996; Anwar and Nagi, 1997;
Kimms, 1999; Park and Kim, 2000). Our current study on
flexible job shop problem with multi-level job structures is
one of such efforts to obtain a workable solution to a practical
problem in a reasonable computational time without
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guaranteeing an optimal solution.

The remainder of the paper is organized as follows. A
description of the flexible job-shop scheduling problem with
multi-level job structures is given in section 2, the proposed
GA approach in section 3, and the numerical experiments in
Section 4. Finally, conclusions and additional remarks are
presented in section 5.

2. Problem Description

Most of the past and current research literatures related to
job-shop scheduling problems assumes simple string type and
mutually independent jobs. In reality, there are not only
precedence relationships between jobs but also resource
flexibility and non-linear routings. The. resource flexibility
can be defined as the existence of alternative routings or
machines. The non-linear routing reflects a cycle in the
manufacturing process including rework and reentry, as well
as tree-like processes such as assembly or disassembly. The
job shops featuring resource flexibility are called either
flexible or multi-resource job shops. Also, a job with
preceding jobs can start only after the completion of the
preceding jobs. Although real shops possess all the
characteristics mentioned above, most previous scheduling
researches have simplified these complex characteristics to
reduce problem complexity.

During the MRP planning process, the quantities and time
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slots for the production of end items and components are
determined taking into account of the multi-level product
structures and routing. Therefore the mixed form of assembly
and disassembly trees and the production orders indicating
quantities and production time-slots are the inputs to the
scheduling problem we are dealing with (Figure 1).

Figure 1. Example of production orders
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2.1. Problem formulation

This research aims to obtain production schedules that
will maintain the MRP production order due dates wherever
possible. We also consider precedence relationships between
operations as well as between jobs. An operation of a job may
be ready when all materials are procured and all the preceding
operations have been finished. The formulation takes into
account multiple identical parallel machines that are grouped
into a work center. Furthermore, each machine has a machine
calendar showing the time intervals of machine unavailability.
We create and insert dummy operations to deal with
unavailable time intervals.

Let us first introduce some of the notations used. The
known parameters are as follows:

> Xypw =1

meM,
Xiju-m + Zqunm' + Yiqu <2
m'em

Cpq —Cu +M(3—Yiqu _Xy'\rm —qunm)ZIpqu
Cij - Cpq + M(2 + Yij - Xijwm - qumu) 2 tijw

N : Number of jobs

i:Index of a job

ij : operation j of jobi

pq : operation g of job p

n, : Number of operations of jobi

D, : Due date of jobi

R, :Ready time of jobi

S, : Set of subsequent jobs of jobi

F :Set of first processed jobs

W : Number of workcenters

w:Index of a workcenter

m, m' : Index of a machine

M, :Set of parallel machines in workcenter w
t;, : Processing time of operation j of job i
0,, : Set of operations processed in workcenter w

The decision variables are:

1 If operation ij may be processed on machine m
= ,Whereme W,

fjwm

0 Otherwise
Y. - 1 If operation Jj precedes operation pgq,
%4 10 Otherwise
S ;wm - Start time of operation j of job i

C.. - completion time of operation j of jobi

ijwm

T, : tardiness of jobi

Using these notations, we are now able to present the
following MIP (Mixed Integer Programming) model
formulation.

Objective function (1) minimizes the total delay. Equation
(2) defines the job tardiness and (3) constrains the duration of
an operation to a value equal to the processing time.
Constraints (4) and (5) guarantee the precedence relationships
among operations. Equation (6) constrains the ready time of

y

each job. Equation (7) ensures that operation is processed

on one of the identical parallel machines designated as =~ "
in work center W . Equation (8) describes a disjunctive

. ij . . o
constraint between 7 in a set which results from %

excluding last operations ”S and P9, and in a set which

results from Oy excluding A (A 1, then the
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is completed before pq

Our model is more complex than the standard job-shop
scheduling problem because of added features such as
machine selection and precedence constraints. A more
efficient search algorithm is needed to yield a good feasible
solution.

3. Solution methodology

Our problem consists of three sub-problems: the
assignment problem of selecting one machine among parallel
machines in each work center, the sequencing problem of
determining the order of the operations and the timing
problem which determines the operation start time.

The genetic algorithm is known as one of the meta-
heuristic method that provides a relatively good solution for
problems of high complexity. We propose a GA approach in
this section. The implementation of the GA requires
following fundamental phases:

e Modeling of the real problem by means of
chromosome representation

o Defining a suitable fitness function

e Defining suitable genetic operators

o Defining how to retain solution feasibility

3.1. Solution encoding based on problem

characteristics

Most existing approaches to flexible job shop scheduling
have been hierarchical, that is, they first determine machine
assignment and then sequence the operations. The
hierarchical approach may be based on the observation that
when a machine is chosen to process an operation, flexible
job shop scheduling becomes the classical job shop problem.
Given the machine assignment, the problem is to find the
sequence of operations which minimize a given performance
function. A representative research based on the hierarchical
approach by Brandimarte (1993), involved the sequencing of
operations firstly by dispatching rules and then the
assignment of operations to machines. Alternatively, the
machine assignment problem may be solved by a load-
balancing method, and then operations sequenced afterwards.
The simultaneous assignment and sequencing approach can
be found in the work of Mastrolilli and Gambardella (2000).

In our approach, we tackle the problem simultaneously by
inventing a gene designed to reflect the precedence
relationships of operations. We invent the Relative
Operation Level (ROL) that incorporates the level
information and randomness to control the pace of the
branches dynamically.

(05,m;.1;)

. (7
Gene : Operation Y may be processed

. . my ! i
in machine Y and has alevel value 7.

.
Level Y determines operation sequence and has the
following property:
Property 1: Let
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3.2. ROL setting procedure

After generating the random number " for all
operations, the interval of an operation is calculated by
equation (9) shown below. The scale factor in (9) simply
converts ROL to an integral value.

r.
_ U
Interval of 0, = <=—x

(Number of Remaini’rjlg Operations of 0;)x(Scale Factor) )

Given the level value of the final operation at random, we
set ROL values of all operations backward using the interval
of the operation and equation (10).

ROL, =ROL,

ijn — Interval of o; (10)

With this chromosome, we can set all the 0/1 variables
defined in section 2, and the MIP model can be transformed
into an LP (Linear Programming) model. When generating an
initial solution, we select the machine to process each
operation, and then sequence the operations in the order of
increasing operation due date.

3.3. Genetic Operators

An operation sequence is defined as a gene as in other job
shop scheduling studies, and we use simple two-point
crossover and bit mutation method among various genetic
operators that have been proposed. The two-point crossover
selects two levels at random, and then generates two children
by crossing over the information from two parents. Each child
merges the partial operation sequences from the two parents
and forms a new sequence. The bit mutation is used as a
mutation operator, which selects an operation at random and
then changes the assigned machine.

3.4. Evaluation of chromosome

We use the roulette wheel approach as a selection
procedure. To select a good chromosome, we have to evaluate
the fitness of each chromosome. We simply use the total
delay as the selection criterion. As mentioned earlier, the MIP
model in section 3 can be transformed into the LP model by
applying chromosome information. Hence, we can use the LP
solver to evaluate each chromosome. However , the
evaluation time increases as the problem size increases in the
use of the LP solver. So, we use the forward scheduling
algorithm from the ready time of each job to the higher level
operations. The overall genetic algorithm procedure is as
follows:

Procedure Genetic Algorithm:
While

Begin
For 1 to ROL Iteration
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Begin
Set ROL();
Generate Initial Solution();
Evaluate();
For 1 to Generation No
Begin
Select();
CrossOver();
Mutate();
Evaluate();
End
End
End

3.5. Large step optimization

Lourengo(1995) introduced a new randomized methods,
designated as large step optimization methods, in the job shop
scheduling, where at each iteration a large step is performed,
followed by a local optimization method. These methods only
consider local optimal solutions and therefore the solution
space is reduced Also, they have the property of being able to
make large changes in the current solution and thus getting
out of possible valleys of the cost function.

In order to revise the fixed relative level which solutions
are confined to, we apply large step transition in the first step
and GA in the second step shown in Figure 2.

Figure 2. Large step optimization

—
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The three main routines of a large step optimization
method are: the method to perform a large step, the one for
the small steps and the accept/reject test. The accept/reject
test can accept only downhill moves.

The overall large-step optimization procedure is as
follows:

Procedure Large-step Optimization:

Stepl. Get an initial schedule o,
Step2. Perform the following loop numiter times:
Large step transition: change levels, |, — [,
Small steps: run a GA with 1,,and obtain o,
Perform an accept/reject test comparing
O-i Wlth o-i+] ‘

Step 3. Return the best solution found o, .

4. Computational experiments

For the computational experiments, we reconstruct the
standard job shop problems LAOIl to LA40 presented by
Lawrence (1984) into problems with multi-level job
structures. The numbers of jobs are 10, 15, 20 and 30, and the
numbers of total machines are 5, 10 and 15, in Lawrence’s
original problem. We set the job levels to 2,3 and 4 and the
work centers to 3,4 and 5, so that the total machines are
categorized into work centers at random.

When forward scheduling is used instead of an LP solver,
GA computation time is saved at the cost of solution quality.
The tests were run 50x100x100 times on a PentiumIll PC
using C++.

The parameters used in GA are as follows:

Due date tightness: 1.000000
Large Iteration: 50
Generation No: 100
Population Size: 100
Crossover: 20

Mutation: 2

We generate fifty random ROLs and then run GA for
each ROL. During GA, 100 initial solutions are obtained
which proceed for 100 generations. A policy that conserves
the best chromosome over generations is adopted.
Experiments show that the mean objective value for 100
chromosomes is dramatically reduced during earlier
generations as shown in Figure 3 for LAO1.

Figure 3. Progress of GA for LAO1
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LAO1~LAOS5 are 5x10 JSSP. Although they are relatively
easy problems, the optimal solutions for them cannot be
obtained in 100 hours. Figure 4 shows the upper bound solved
by ILOG CPLEX 7.0. Compared to the optimal procedure,
GA generates the lower objective value than that of the MIP
optimizer after fifty iterations.
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Figure 4. Comparison of best GA solution with optimal
upper bound
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The dispatching rule ODD (Operation Due Date) recently
proposed by Reeja and Rajendran (2000a,b) reported to show
good performance in delay minimization. To verify the GA
performance, we compare GA to ODD and other dispatching
rules such as MWKR (Most Work Remaining) and JDD (Job
Due Date). All dispatching rules calculate the solution in 0.5
sec, but they display a wide variation in solution performance
as shown in Table 2. In all problems, GA is the best. The
value of (dispatching rules’ delay / GA delay) reaches a
maximum value of 51.29. In particular, JDD generates the
worst solution in 33 of the 40 problems. Among the
dispatching rules, ODD generates the best solution in 21
problems and MWKR in 17.

Table 1 Comparison of GA with dispatching rules for
total tardiness

LA26 2647 2995 4696 2405
LA27 3720 3347 4280 2839
LA28 2254 2154 3147 1892
LA29 2772 2204 3421 1105
LA30 2343 1639 3077 1019
LA31 4635 5489 6563 4085
LA32 5696 5995 7503 4285
LA33 4585 4662 7574 4038
LA34 5030 4766 6874 4737
LA35 5068 6344 5807 4453
LA36 0 0 322 0
LA37 336 272 460 196
LA38 1049 1014 648 547
LA39 61 149 406 30
LA40 89 148 718 14

Problem ODD MWKR JDD GA_BEST
LAO1 575 522 727 150
LAQ2 918 572 811 149
LAO3 1203 847 735 432
LAO4 506 515 849 210
LAOS 281 344 712 118
LAO6 852 902 1329 678
LAO7 1562 1434 1729 988
LAOS 455 656 897 287
LAQ9 483 407 1586 345
LA10 1376 1463 1677 577
LA1l 322 457 547 201
LA12 358 740 741 147
LA13 635 771 890 424
LAl4 536 358 876 155
LA1S 524 387 788 256
LAI16 18 106 59 0
LA17 291 95 381 50
LA18 44 0 146 0
LA19 662 561 171 54
LA20 217 400 537 0
LA21] 335 225 518

LA22 178 44 579 0
LA23 197 336 1396 28
LA24 173 462 1080 114
LA25 622 817 887 538

5. Conclusion and further research issues

It is evident that there are disparities between the job-
shop scheduling theory and shop floor practices. One of these
is manufacturing flexibility, which supports various
manufacturing alternatives in production, and another is job
hierarchy, which describes the gozinto relationships between
jobs. In this paper, we have dealt with the flexible job-shop
scheduling problem in the processing of multi-level jobs
considering complex routings and alternative machines. This
paper has proposed a new gene design under the framework
of genetic algorithm, to represent machine assignment,
operation sequences, and the relative level of the operation to
the final operation. The relative operation level is used as the
control parameter that synchronizes the completion timing of
the components belonging to the same branch in the job
hierarchy. We compared the effectiveness of the genetic
algorithm utilizing randomly generated relative levels with
that of several dispatching rules in terms of delay. The genetic
algorithm revealed outstanding performance in the solution of
forty modified standard job shop problems and shows good
promise as a scheduling tool in an MRP environment.
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