생물학적 동등성시험에서 사용되는 통계방법에 대한 고찰

강 승 호

이화여자대학교 통계학과

* Bioavailability of a drug:

the rate and extent to which the active ingredient is absorbed and becomes available at the site of drug action

- * brand-name drug vs generic drug
- * ANDA
- * AUC (Area Under the Curve)

 C_0, C_1, \ldots, C_k : plasma concentration obtained at time $0, t_1, \ldots, t_k$

$$AUC(0-t_k) = \sum_{i=2}^{k} \frac{C_{i-1} + C_i}{2} (t_i - t_{i-1})$$

$$AUC(0-\infty) = AUC(0-t_k) + C_k/k_e$$

 k_e : elimination rate

Assumption:

When two drugs products are equivalent in the rate and extent to site of drug action, it is assumed that they will be therapeutically equivalent.

- * The comparison of the first moment (mean) of the distribution of the pharmacokinetic parameters (say, $AUC(0-\infty)$) for the two drug products refers to the comparison of "average bioavailability".
- * Parallel Design vs Crossover Design
- intersubject variability
 intrasubject variability
- * Crossover design removes the intersubject variability and use only intrasubject variability.

* 2 x 2 Crossover Design

We wish to compare formulation A and B.

We make two sequences.

sequence $1: A \rightarrow B$

sequence $2: B \rightarrow A$

We assign $n_1 + n_2$ subjects randomly.

 n_1 subjects are assigned to sequence 1

 n_2 subjects are assigned to sequence 2

period1 washout period2

sequence 1 A . B

sequence 2 B . A

- * carryover effect
- * Statistical Model

$$Y_{ijk} = \mu + S_{ik} + P_j + F_{j,k} + C_{(j-1,k)} + e_{ijk}$$

where

 μ : overall mean

 S_{ik} : random effect of the ith subject in the kth sequence

 P_j : fixed effect of jth period

 $F_{j,k}$: drug effect

 $C_{(j-1,k)}$: carryover effect

 e_{ijk} : random error

$$S_{ik} \sim N(0, \sigma_s^2)$$

$$e_{ijk} \sim N(0, \sigma_e^2)$$

 S_{ik} and e_{ijk} are independent.

* 2 x 2 Crossover Design

sequence period I period II

1 (RT) $\mu + P_1 + F_R$ $\mu + P_2 + F_T + C_R$ 2 (TR) $\mu + P_1 + F_T$ $\mu + P_2 + F_R + C_T$

* Test for Carryover Effects

Consider sum of observations in two periods.

$$U_{ik} = Y_{i1k} + Y_{i2k}$$
 : $i = 1, ..., n_k, k = 1, 2$

$$U_{i1} \sim N(2\mu + C_R, \sigma^2_u), i = 1, , , n_1$$

 $U_{i2} \sim N(2\mu + C_T, \sigma^2_u), i = 1, , , n_1$

where

$$\sigma_u^2 = 2(2\sigma_s^2 + \sigma_e^2)$$

Let
$$\overline{U}_{.k} = n_k^{-1} \sum_{i=1}^{n_k} U_{ik}, k=1,2$$

$$\widehat{\sigma}_u^2 = \sum_{k=1}^2 \sum_{i=1}^{n_k} (U_{ik} - \overline{U}_{.k})^2$$

$$T_c = \frac{\overline{U}_{.2} - \overline{U}_{.1}}{\widehat{\sigma}_u \sqrt{n_1^{-1} + n_2^{-1}}}$$

Carryover effect exists if

$$|T_c| > t(\alpha/2, n_1 + n_2 - 2)$$

* Test for Average Bioequivalence

Responses such as AUC are usually positively skewed.

→ Not normal distribution

Take Log transformation!!!

Let
$$Y_{ijk}^* = \ln(Y_{ijk})$$

 $\overline{Y_R^*} = 2^{-1}(\overline{Y_{.11}} + \overline{Y_{.22}})$
 $\overline{Y_T^*} = 2^{-1}(\overline{Y_{.12}} + \overline{Y_{.21}})$

The 90% confidence interval is (L_1, U_1) , where

$$L_{1} = (\overline{Y}_{T}^{*} - \overline{Y}_{R}^{*})$$

$$-t(\alpha, n_{1} + n_{2} - 2) \widehat{\sigma}_{d} \sqrt{n_{1}^{-1} + n_{2}^{-1}}$$

$$U_{1} = (\overline{Y}_{T}^{*} - \overline{Y}_{R}^{*})$$

$$+t(\alpha, n_{1} + n_{2} - 2) \widehat{\sigma}_{d} \sqrt{n_{1}^{-1} + n_{2}^{-1}}$$

We conclude that two formulations are average bioequivalent if

$$L_1 > \ln(0.8) = -0.2231$$
 and $U_1 < \ln(1.25) = 0.2231$

- * Westlake's symmetric confidence interval
- * Confidence interval based on Fieller's theorem
- * Chow and Shao's confidence interval

- Interval Hypotheses Testing -

* Usual hypothesis testing

$$H_0: \mu_T = \mu_R$$
 vs $H_1: \mu_T \neq \mu_R$

* In Bioequivalence

$$H_0$$
: $\mu_T \neq \mu_R$ vs H_1 : $\mu_T = \mu_R$

$$H_0: \mu_T - \mu_R \leq \theta_L$$
 or $\mu_T - \mu_R \geq \theta_U$

vs
$$H_1: \theta_L \langle \mu_T - \mu_R \langle \theta_U \rangle$$

where θ_L and θ_U are some clinically meaningful limits.

* The above hypotheses are decomposed into two sets of one-sided hypotheses.

$$H_{01}: \mu_T - \mu_R \leq \theta_L$$
 VS $H_{11}: \mu_T - \mu_R > \theta_L$

and

$$H_{02}: \mu_T - \mu_R \ge \theta_U$$
 vs $H_{12}: \mu_T - \mu_R < \theta_U$

If we reject H_{01} and H_{02} , then we conclude $\theta_L \langle \mu_T - \mu_R \langle \theta_U \rangle$

* Schuirman's Two One-Sided Procedure

We conclude that two formulations are bioequivalent if

$$\frac{(\overline{Y_T^*} - \overline{Y_R^*}) - \theta_L}{\widehat{\sigma_d} \sqrt{n_1^{-1} + n_2^{-1}}} > t(\alpha, n_1 + n_2 - 2)$$

and

$$\frac{(\overline{Y}_{T}^{*} - \overline{Y}_{R}^{*}) - \theta_{U}}{\widehat{\sigma}_{d} \sqrt{n_{1}^{-1} + n_{2}^{-1}}} < -t(\alpha, n_{1} + n_{2} - 2)$$

* Nonparametric Methods

When assumption of normality (for raw data or for log-transformed data) is violated, let

$$d_{ik} = 2^{-1} (Y_{i2k} - Y_{i1k}),$$

 $i = 1, ..., n_k, k = 1, 2$

"period difference"

Let

$$b_{hik} = d_{ik} - \theta_h$$
, $h = L$, U

for subjects in sequence 1

$$b_{hik} = d_{ik}$$

for subjects in sequence 2

For a fixed h = L, U, b_{hil} and b_{hi2} have the same distribution except for the mean difference.

We can construct Wilcoxon rank sum test based on the ranks of b_{hil} and b_{hil} .

 $R(b_{Lik})$ = rank of b_{Lik} in the combined sample b_{Lik} , $i=1, ..., n_k$, k=1,2

$$W_L = R_L - 2^{-1} n_1 (n_1 + 1)$$

We reject H_{01} if $W_L > w(1 - \alpha)$

- * Power of Schuirman's two one-sided t test procedure
- * The conclusion of bioequivalence based on only average bioavailability may be misleading.

We need to investigate the assessment of equivalence in variabilities of bioavailability between two formulations.