A Non-Cacheable Address Designating Scheme in MMU-less Embedded Microprocessor Systems

A Non-Cacheable Address Designating Scheme in MMU-less
Embedded Microprocessor Systems

*Yong-Seok Lim, **Woon-Sik Suh, *Suki Kim

* Department of Electronics Engineering, Korea Univ, ** Samsung Electronics Co. Ltd

E-mail: yslim@ulsi.korea.ac kr

ABSTRACT

This paper proposes a novel scheme of designating non-
cacheable addresses of memories in embedded systems of multi-
master architectures without a Memory Management Unit
(MMU). As a solution for data coherency problem between
external memories and a cache memory, we proposes a cache
masking scheme by allocating the most significant bit of address
not used in 32-bit address system as indicator bit to designate
non-cacheable address. As this scheme enables non-cacheable
area designation every address, the simpler in the aspect of
hardware and more flexible size of non-cacheable area can be
obtained.

1. INTRODUCTION

In general, the procedure of instruction execution consists of
the pipelining stages sequentially that fetching an instruction from
memory, decoding the instruction, execution instruction and lastly
writing back result. According to instructions, there is the
procedure fetching operand from memory and saving again the
calculation result in the memory. In the course of this series of
memory access, if operand changes any time by the
multiprocessor system sharing one bus or organized multiple
masters, the coherency between cache and memory shall be
considered carefully. General solutions for this cache coherency
protocol are as follows [1];

BUS snooping protocol for shared bus system
Directory-based protocol

Software-based protocol

Static protocol (shared writable data is non-cache)

Firstly, for BUS snooping protocol techniques, cache controller
continuously compares the tag of its cache with the address on
memory and system bus, and monitors memory and system bus
whether I/O systems or other bus masters read and write. The bus
snooping hardware of the cache controller maintains information
about the state of every cache line and takes appropriate action to
maintain coherency [2]. Secondly, Directory-based protocol

divides physical memory into fixed-size blocks and saves entry
for each cache in the directories of blocks. Directory entries can
be distributed so that different requests can go to different
memories, thereby reducing contention and allowing a scalable
design. By using hardware, these schemes secure the merit of
software transparency to make cache not be seen in the operating
system and software, while these are complex in the aspect of
hardware and may not be suitable for the embedded systems for
special purposes. Thirdly, Software-based protocol, relies on
either laborious programming or elaborate compilers, insert cache
control instructions at compile-time to maintain coherence. This
scheme could force the cache to flush its contents to main
memory whenever a critical section of code was exited [1]. Lastly,
static protocol (shared writable data is non-cache) is the simplest
cache coherency strategy among these schemes; it maintains
coherency by non-cache tagging at a block to be changeable by
multi-master and making it exist only in main memory. Cache can
save any data in the whole system memory area, however, if it is
designated as non-cacheable, it cannot be cached when a read-
miss occurs. This strategy is much used in the embedded system
due to its simple and plain feature of hardware implementation.

Besides, there ar¢’many variations on the cache coherency that
arc much more complicated models. The one found on both
Pentium-Pro and PowerPC is called MESI [2]{3], but is beyond
the scope of this paper.

This paper is to examine what existing schemes were applied to
the MMU-less embedded systems for the static protocol strategy
and then to describe the schemes proposed in this paper below
[4151(6].

— Address Memorv Bus
Memory
9 Cache o
g Cache cacheable
Processor 2 Memory cheab
[}
B —
iss
Cache
Controller Cacheable
- region
Cache AllocateT i 1 LHit y
ORR—

Fig 1. Block diagram of static protocol having an external cache

- 235 -

20024 T N xS ets] st SEstatsl =27 M25d M1z

2. GENERAL NON-CACHEABLE AREA
DESIGNATING SCHEMES

Fig 1 is a general static protocol block diagram. As the mention
above, static protocol is usually used in embedded systems due to
its simple characteristic. And, in the aspect of hardware can be
easily constructed - simple decoder, some registers and so on.
In Embedded systems, this scheme can be applied as following.

2.1 Scheme 1 - Specification start boint and
end point to indicate non-cacheable areas

The first scheme is setting non-cacheable areas by writing to
register starting points and end points of the areas as shown in Fig
2 [4]. But, it has a limitation of non-cacheable area designation as
the number of non-cacheable area designating registers is affected

0x0000 0000

Fom—m———————
cacheahle SFR_NONEO
noncacheable]
SFR_NONEO
rrehenhle
nancacheahle
‘ SFR_NONEI
cacheahle L_:N__l
OXFFEEFFEEQ "~} ‘e .

Address Map Area Sepecial Function Register

Fig 2. Scheme of using start point and end point to
designating non-cacheable areas

2.2 Scheme 2- Non-cacheable area designating
scheme having fixed size

The second scheme is setting non-cacheable areas in the non-
cacheable pointer registers and comparing these with addresses
from CPU using comparator. This scheme saves a part of physical
address in the register and this part decides size of the non-
cacheable area. Fig.3 shows whether to perform caching as the
address from CPU is compared with address set in the non-
cacheable pointer register.

SB 1SR
Address’ PI' |l]

-
-
P -
. .
- .

= =

’
P N\

Non-cacheable
pointer registers
‘When hit

Fie 3. Block diacram of scheme having a fixed

When miss | Cache Controller

Cache miss

Address Bus

This scheme, compared to the one specifying a start point and an
end point to designate non-cacheable areas, can reduce the
number of registers, but resolution —the size of non-cacheable
area- is limited and the number of non-cacheable arca
designations depends on the number of registers as the scheme
specifying a start point and an end point.

The resolution setting is as shown in Fig.4. That is, each non-
cacheable area has the 2(32-m-n) value in size.

j Non-cacheable pointer registers

| I Physical address
m bit! n bit 32-m-n bit

N —

Resolution size = 262™™

——

Comparator operation

Invalid Valid address section

Fio 4 Resnlntion decisinn method

3. PROPOSED NON-CACHEABLE
ADDRESS DESIGNATING SCHEME

-Mirroring scheme

The main idea of this proposed paper is using an address that is
not used on the physical address to mask a cache operation. It
means that the MSB of the address becomes a non-cacheable
indicator whether to perform the cache operation or not. If this bit
is 1, although cache, miss cycle, cache does not operate the miss
cycle. On the contrary, if this bit is 0, cache performs the normal
operation including the cache miss cycle. Prior to this paper, it is
impossible to specify the non-cacheable address by the unit of
addresses or variables, to access hardware controlling registers
called special function registers (SFR). And also those schemes
are not available for masking the small size non-cacheable area
such as char-type variables. In this proposed scheme, the cases
such as the variable, data structure variables size and hardware
controlling register accesses can be applied.

. Cacheable area Non-cacheable area

0%0000 0000 ,
0%0CO1 0000 -Hf======= ;
" >

0x8C01 0000

0x0CO1_FFFF 0x8CO1_FFFF

0x8000 0000 ¥

! Not Used
{Mirroring | Memory Area
Area

OXFFFF_FFFF ¥

Fig 5. Example of mirroring Scheme

- 236 -

A Non—Cacheable Address Designating Scheme in MMU-less Embedded Microprocessor Systems

To achieve this scheme, not only hardware implementations
controlling the cache system with the not-used bit of addresses
but also software implementations using the mirroring arca
through the variable assignment should be considered. Fig.5
shows how the most significant bit specifies the non-cacheable
areas from 0x0CO01_0000 to 0x0CO1_FFFF in the memory with
the physical area of 1G Byte. The logical address space is
separated into mirroring area and normal area in the figure. This
mirroring area is made use of the non-cacheable channel on the
software. That is, to designating the non-cacheable address, the
mirroring area from 0x8000_0000 to OxFFFF_FFFF should be
used. The value of the MSB address bit depends on the sofiware
programming. When the address is targeting the physical address
space, it means that the value of MSB is 0 and the cache normally
operates. On the other hand, if the address is targeting the
mirroring address space exceeding the physical address, the value
of MSB is 1, and the hardware masks cache operation. Because
this MSB is not propagated to other below logics, irrelevantly
masking the cache, the other logics operate normally.

Fig.6 shows the actual implementation results of hardware and
includes descriptions of the operation on the software in the
following Example. If a variable for specifying the non-cacheable
address in software is pBUF_B, the address is allocated in the
mirroring area to include the non-cacheable indicator (line3 in
Example) and just this variable on the program like main routine
in Example is used. This rule is essential to fully exclude a
caching status not intended, which may occur in non-caching of a
variable with data size less than a block size of cache.

address
|]
S

M| N| | Block tag block(4word)
0x00fd00 1 4 !
..... v
K|L|MIN
i K when pl_iUF_Bl L v
.: miss
0x80000000 g —
5 I S
%, vBUF B
KN 0x80£d000!
K H
physical memory non-cacheable Cache

| E{ea channil |

memory

Fig 6. Example of data transferring in Mirroring Scheme

A caching state of the variable specifying a non-cacheable
address and an example of fully solving it are illustrated in
Example in detail. For instance, like the case of mark 1 in
Example, a condition that the content of pBUF_B is cached
physically in accessing pBUF_B1, a variable adjacent to non-
cacheable variable pBUF_B occurs. After cache read miss cycle
occurs, if address 0x80fd0000 included in the mirroring space is
issued at next cycle, the MSB of address masks the cache
operation and memory controller gives data K to CPU instead of
cache controller. In this case of accessing data just with vBUF_B
without using pBUF_B on the program, in any event, data K
inside the cache is never accessed. (mark 2 in Example). Fig.6
shows this procedure. Also this process is applied to the write
cycle. When CPU issues address 0x80fd0000 through variable
vBUF_B which designates a mirroring area, cache controller
recognizes that value of the MSB is 1, and then masks the cache.
However, memory controller receives address 0x00fd0000 from
the address bus and writes data k at the place of address
0x0£d0000.

#include <stdio.h>
#define pBUF_B (*(volatile unsigned *)0x00£fd0000)
/* Physical Address for Non-Cacheable */
#define pBUF_B1 (*(volatile unsigned *)0x00fd0004)
/* Physical Address for Cacheable */
#define vBUF_B (*(volatile unsigned *)0x80fd0000)
/* Non-Physical Address for Non-Cacheable */

void main(void)

{
unsigned char Cac_B1, Non_B;
pBUF Bt = 0x66;
vBUF_B = 0x77;
Cac_Bl=pBUF_BI; // mark 1
Non_B =vBUF_B; // mark 2
return 0;

3

main

0x000000: €3200066.... : MOV r0,#0x66
0x000004: €3a018fd : MOV 1, #0xfd0000
0x000008: e5810004.... : STR 10,[r1,#4]
0x00000c: €3a02077..... MOV 12 #0x77
0x000010: ¢1810f00..... ORR r0,r1,r0,LSL #30
0x000014: €5802000....: STR r2,[r0,#0]
0x000018: €5911004....: LDR rl,[r1,#4]
0x00001c: €5900000....: LDR r0,{r0,#0]
0x000020: €3a00000..... MOV 10,#0

NANANY AL 10NN o NANNT n 214

- 237 -

00AE BT AtEetE st FEsteds =23 M3 M1z

Example. Software example of non-cacheable application.
Assemble test code is made of ARM instruction [7] sets
Exglnn%%ngﬂ%t&g b%?em)§ qzriguage code by applying the
mirroring scheme to prove that physical memory area is different
just in only upper one bit from virtual address area (mirroring
area). In this procedure, vBUF_B, as a variable of mirroring area,
is non-cacheable channel of pBUF_B, a variable in the physically
existing area.

The assemble code in Example suggests the process of data
access through mirroring channel as the assemble result of C
code.

The hardware configuration by this scheme is implemented
more simply compared to existing ones and secure the
availabilities. Compared to existing ones, that is to say, this
proposed scheme does not have to any registers to store addresses
of designating non-cacheable areas and any comparator, either.
But nevertheless this scheme can be obtained more flexible size of
non-cacheable area and specify non-cacheable area every
addresses.

4. CONCLUSIONS

Non-cacheable area designation schemes are usually used at the
MMU-less embedded systems due to their simple characteristics.
In this proposed paper, by allocating the variables for accessing
non-cacheable areas to mirroring channel which is the address
over the specifiable actual range of memory map -mirroring area-
and making a most significant bit of CPU address which is
actually not used as a non-cacheable indicator bit, we can obtain
much flexibility in assigning non-cacheable arca and designate
non-cacheable area in byte address unit and need not have any

extra registers to specify these non-cacheable areas. The idea of
this paper, although it has a bit of elaborateness of software (non-
cacheable physical memory access through mirroring channel),
can be implemented by allocating only address of a variable for
cache masking to the mirroring area, following the general flow
of software development.

REFERENCES

[1] Scott E. Crawford and Ronald F. DeMara “Cache Coherence
in a Multiport Memory Environment” Massively Parallel
Computing Systems, 1994, Proceedings of the First
International Conference on, 1994

[2] Nikitas Alexandridis “ Design of microprocessor — based
systems” prentice hall, 1993

[3] David A. Patterson and John L. Hennessy “Computer
rganiztion & Design” Morgan Kaufmann, 1997

[4] Samsung’s S3C44B0X (KS32C41100) 16/32-bit RISC MCU
Data Book, Samsung electronics.

[5] Eisner, C.; Shitsevalov, I.; Hoover, R.; Nation, W.; Nelson,
K.; Valk, K “A methodology for formal design of hardware
control with application to cache coherence protocols”.
Design Automation Conference, 2000. Proceedings 2000,
2000, Page(s): 724 —729

[6] Tomasevic, M.; Milutinovic, ' “Hardware approaches to
cache coherence in shared-memory multiprocessors. 2”.
IEEE Micro, Volume: 14 Issue: 6, Dec. 1994
Page(s): 61 -66

[71 Steve Furber, ARM System-On-Chip Architecture. Addison-
Wesley, ADDISON-WESLEY, 2000

- 238 -

