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1. Abstract

We consider a master-slave pulse-coupled network of
bifurcating integrate-and-fire circuits. The network ex-
hibits in-phase chaotic synchronization and various pe-
riodic synchronization phenomena. In order to analyze
these phenomena precisely, we derive a one-dimensional
return map. Also using a simple test circuit, typical
phenomena are demonstrated in the laboratory.

2. Introduction

In this paper we consider synchronization phenom-
ena in a master-slave pulse-coupled network of bifurcat-
ing integrate-and-fire circuits. As a state of the mas-
ter/slave reaches a firing threshold, the state is reset to
a periodic base level and a pulse is generated. This is
called the self-firing. The output pulse-train of the mas-
ter is input to the slave. If an input pulse arrives and the
slave state is above a refractory threshold, the slave fires.
This is called the compulsory-firing. Due to interactions
of self-firings and compulsory-firings, the network ex-
hibits various synchronization phenomena as the follow-
ing. Let the slave be periodic before the coupling. If the
master is periodic, the slave exhibits compulsory-firings
and self-firings and the network exhibits various peri-
odic synchronizations. Let the slave be chaotic before
the coupling. If the master is chaotic, the slave exhibits
compulsory-firings and the network exhibits chaotic syn-
chronization. If the master is periodic, the network can
also exhibit various periodic synchornizations. In order
to analyze these phenomena exactly, we derive a one-
dimensional return map for the compulsory-firing mo-
ments. We also characterize the phenomena using a rate
of compulsory-firings and self-firings. Typical phenom-
ena are demonstrated in the laboratory using a simple
test circuit.

Integrate-and-fire circuits have been studied as sim-
plified neuron models [1][2], and their pulse-coupled neu-
ral networks {PCNNs) have been constructed. Study of
synchronization phenomena of the PCNN is an impor-
tant nonlinear problem, and many fundamental results
have been published [3]{4]. Based on periodic synchro-
nization, applications of PCNNs have been considered,
e.g., associative memory, image segmentation and com-
binational optimization problem solver [5]-[7]. However
chaotic or various periodic synchronizations of PCNNs
have not been considered sufficiently so far. Hence our
results may contribute to develop a PCNN having some
flexible function based on various synchronization phe-
nomena. Basic results can be found in [8].
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Figure 1. Master-slave pulse-coupled network.

3. Master-Slave pulse-coupled network

We consider a master-slave pulse coupled network of
bifurcating integrate-and-fire circuits as shown in Fig.1.
Base signals Bps(t) = —Kpssin(2nt/T) of the master
and Bs(t) = —Kgsin(2nt/T) of the slave have period
T and are synchronized. When the master state ups
reaches a firing threshold Vp, the master fires: a firing
pulse Yps = Vy is generated, the switch SW)y is closed,
and the state vy is reset to the base Bas(t). When the
slave state vg reaches a firing threshold Vr, the slave
fires in a likewise master. In addition, if Vg < vg < Vp
and an input pulse Yps = Vg arrives, the slave fires.
Using the following dimensionless variables and param-
eters
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the network dynamics is described by

TM = SM for zp < 1,
zm(tH)y=by(rh) if zm(r) =1,
0 for zpm <1, (2)
+) =
ym () = { 1 if ay(r) =1,
bu(T) = —kn sin(277),
Ig=sg for z5 <1,
zs(rt) = bs(r*) if zs(r) =1,
zs(rt) = bs(r*) if xs(r) > the and
ym(r) =1,
0 for zs <1, ®3)
ys(tt) =< 1 if zs(r) =1,

1 if zg(r) > thcand yp =1,
bs(t) = —kgsin(2nT).
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Figure 2. Basic dynamics of the network. T4 =

f4(Tm) — (1 — the)/ss.

The suffixes 3" and ”s” represent master and slave,
respectively. kar and ks are the amplitudes of the bases
bp(7) and bg(T). sy and sg are called stimulations.
the is called refractory threshold. In this paper, we fix
sy = 1, ss = 0.95 and the = 0.8. The controlled
parameters are |kaps] < 1 and |ks| < 1.

First, we explain the dynamics of the master (see
Fig.2). If the state zpr reaches a firing threshold 1,
the master outputs the firing pulse yar = 1 and zp is
reset to the base bp(7). This is called the self-firing.
Repeating the self-firings, the master generates a pulse-
train yps(7). Letting 7, be the n-th pulse position and
letting R* represent the positive reals, the dynamics
of the pulse-train is described by a pulse position map
fu:RY — RY,

Tntl = fmM(Tn) = Tn — ;}A;‘bM(Tn)- (4)

Noting fas(T +1) = far(7) + 1, we obtain a return map
Tot1 = Fr(me) = fm(m) (mod 1). (5)

Fig.3 shows examples of the return map Fps. We note
that the shape of the map fjs is determined by the shape
of the base by(7). Hence we can obtain various pulse-
train dynamics by adjusting the shape of the base. Here
we introduce the following.

Definition A pulse position 7* is said to be periodic
with period P if P is the minimum integer such that
F2(r*) — 7* = P for some positive integer Q, where e
denotes the Q-fold composition of f. A pulse-train y* is
said to be periodic with period P if y* is represented by
the periodic pulse positions (7*, f(7*), ..., f¢~}(*)) and
fR(m) = 7"+ P. A periodic pulse-train y* is said to be
stable or unstable if [Df9(7*)| < 1 or |Df2(r*)| > 1,
respectively, where Df = df /dr,.
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Figure 3. Return map Fu. (a) Periodic pulse-train.
kar = 0.4. (b) Chaotic pulse-train. ky = 0.73.

Fig.3(a) corresponds to a stable periodic pulse-train,
and Fig.3(b) corresponds to a chaotic (non-periodic)
pulse-train.

Next, we explain the dynamics of the slave using
Fig.2. If the state zg reaches the firing threshold 1, the
slave outputs a pulse ys = 1, and zg is reset to the base
bs(T) as shown at time 7,. This is the self-firing(SF).
If thc < s < 1 and an input pulse yy = 1 arrives,
the slave outputs a firing pulse ys = 1 and the state
zs is reset to the base bg(7) as shown at time 7. This
is called the compulsory-firing(CF). If s is below the
refractory threshold the, the input pulse does not affect
to the slave as shown at time 7.. Due to the interaction
of the CFs and the SFs, the network exhibits various
phenomena. Note that because of the CFs, these phe-
nomena become super-stable with respect to the initial
state of the slave. Fig.4 shows typical phenomena. Let-
ting Trn be the m-th CF moment, the dynamics of the
slave is described by the following CF map:

T = 9(Tm) = f1(Tm), (6)

where g is the minimum integer such that

F2Tn) = (1= the) < fis(T) < f5(T),

fs(ry=7- glgbs(‘r),

where p is some positive integer. g means the number of
the SF's of the master during T;, < 7 < Tiny1. p means
the number of the SFs of the slave during T, < 7 <
Trms+1- We obtain the following CF return map:

Ty = G(Tw) = g(T) (mod 1).  (8)
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Figure 4. Phase space trajectories. (a)&(c): Periodic
slave. ks = 0.4. (b)&(d): Chaotic slave. kg =
0.73. (a) kpr = 0.4 and Rg = 1. (b) kp = 0.73
and Rc = 1. (¢) kp = 0.5 and Re = 0.5. (d)
ky = 0.7 and R¢ ~ 0.67.
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/ Figure 6. (a) Bifurcation diagram of SF moment 7, of
/ the master. (b)&(d) Bifurcation diagram of CF
moment Ty, of the slave. (b)ks = 0.4. (d)ks =
Fl F, 0.73. (c),(e)&(f) CF rate Rc. (c)ks = 0.4. (e)ks =
Y 0.73. [b]-[e] correspond to (b)-(e). a-d correspond
to Fig.4(a)-(d).
(© @)

Figure 5. CF return map. (a)&(c): Periodic slave. kg =
0.4. (b)&(d): Chaotic slave. ks = 0.73. (a) ky =
04 and Rc = 1. (b) kp = 0.73 and R¢c = 1.
(c) kar = 0.5 and Re = 0.5. (d) ky = 0.7 and
R ~ 0.67. (a)-{d) correspond to Fig.4(a)-(d).

ITC-CSCC 2002



Fig.5 shows CF return map. In order to characterize
these phenomena, we introduce a CF rate Rc as the
following:

N¢

Ro= —2¢
= Ns + Nc

(9)
where Ng is the number of SFs, N¢ is the number of
CFs, and Ng is sufficiently large. We can calculate R¢
using the CF map g: the iteration number gives N¢,
and the summation of p in Equ.(7) for each T, gives
Ns + N¢.

Fig.6(a) shows bifurcation diagram of the SF moment
75, of the master. Let us fix the slave parameter at ks =
0.4. In this case, if the slave has no pulse-train input
yM, it is periodic. Fig.6(b) and (c) show a bifurcation
diagram of the CF moment T,, and the CF rate R¢
for the master parameter kp. If Re = 1, the slave
exhibits the CF only, and T,, = 7,. Then, the plots
of the CF moment T}, are identical with the plots of
the SF moment 7, of the master. If Rc < 1, the slave
exhibits the CFs and the SFs. Then, the plots of T},
include lighter parts and lacking parts which correspond
to SFs. Next, let us fix the slave parameter at ks =
0.73. In this case, if the slave has no pulse-train input
yM, it is chaotic. Fig.6(d) and (e) show a bifurcation
diagram of T, and R¢ for kps. Compared to Fig.6(b),
the plots of T;,, in Fig.6(d) have fewer lacking parts: a
chaotic slave may synchronize with more various pulse-
train input yas than a periodic slave. Fig.6(f) shows a
bifurcating diagram of R¢ for ks and kps.

4. Implementation

We have implemented the network as the following.
The base signals Bps(t) and Bg(t) are generated us-
ing a function generator. The circuit is implemented
by NJM13600(current source), LM339(comparator),
4066(switch), 14071(OR. gate) and TL071(op-amp). In
order to obtain the firing pulse with appropriately short
width, we added monostable multivibrators(4538) at the
outputs of the comparators. Fig.7 shows laboratory
measurements.

5. Conclusions

The master-slave network can exhibit various syn-
chronization phenomena due to the interaction of the
SFs and the CFs. It is suggested that a chaotic slave can
synchronize with more various input pulse-trains than
a periodic slave. Future problems include: 1) detailed
classification and analysis of the synchronization phe-
nomena; 2) development of the network to an artificial
neural system; and 3) design of a simple implementation
circuit.
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Figure 7. Laboratory measurements. C = 10 [nF}, Vp =
2[V], Ve = 1.6{V], T = 0.5[ms}, I = 32[uA], Is =
29(uA}. vy and vg: 2V/div. (a)&(b): Periodic
slave. K5 = 0.8[V]. (¢)&(d): Chaotic slave. K5 =
1.46[V]. (a) kn = 0.8[V]. (b) kar = 146[V]. (c)
ku = 1V]. (d) km = 1.4[V]. (a)-(d) correspond
to Fig.4(a)-(d).
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