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Abstract:
We present the information theoretic learning based on the
Tsallis entropy maximization principle for various g. The

Tsallis entropy is one of the generalized entropies and is a
canonical entropy in the sense of physics. Further, we
consider the dependency of the learning on the parameter o,
which is a standard deviation of an assumed a priori
distribution of samples such as Parzen window.

1. Introduction
Learning from examples is intrinsically related with the
extraction of information from examples, but in general
some of the method such as back propagation with mean
squared error (MSE) are used. But in recent years, some of
the novel way which use the entropy to estimate the
distributions of the input data were sugested, and were
given notice. Jose C. Principe and Dongxin Xu proposed
information theoretic learning that maximizes entropy with
Parzen Window method using a Gaussian kernel as the
estimation of probability density function (PDF){1]. The
way they proposed is the unsupervised, directly, sample by
sample learning. In their paper, but, only Renyi entropy of
information order g fixed 2 is used, so other entropy and
information order are not used. Therefore in this paper, we
use Tsallis entropy which is one of the generalized entropy,
and perform information theoretic learning with Tsallis
entropy, with various g. We also consider the dependency

of the learning on the parameter o, which is a standard
deviation of an assumed a priori distribution of samples
such as Parzen window.

2. Generalized Entropy
Renyi entropy which is used in the Principe’s paper, is one
of the Genaralized entropy defined as

1
Sy =-1—:—[;logjp(x)qu ,

where q is variable called information order, p(x) is PDF of

random variable x . The Tsallis entropy includes the
Boltzmann - Shannon entropy as the specialcase g =1,

SF =~ p(x)log p(x)dx
The Tsallis entropy is defined as

AL P
Sq~q_1(1 [p dx) :

where q is called the information order, p(x) is PDF of

random variable x. The Renyi entropy and Tsallis entropy
is connected by following equation,

1
S‘f =1~_—;10g(1+(1—-q)SqT)

3. Information Theoretic Learning with
Maximizing Tsallis Entropy

Linsker proposed maximum entropy as a self-organizing
principle for neural systems{2]. He showed if the
covariance matrix is held constant, the continuous entropy
measure is maximized for the normal distibution. If we
assume that each element of the random vector is
statistically independent from the other elements, we can
use this propaty for the learning.

A nonparametric kernel-based method for estimationg the
PDF well known is the Parzen window method{4]. Parzen
window estimate of the probability distribution, f,(a), of a

random vector Y € R" at a point a is defined as

N
fy(a)=%ZK(y,-—a) ,

where K(.) is a kernel function which itself satisgies the

properties of PDFs. Because of the local estimation of the
PDF, the kernel function should also be localized, such as
the Gaussian function{3]. So, we use the Gaussian function
as the kernel of it. Parzen window using a Gaussian kernel
is given as

1 N
fa)=—Y G(y-a,0°1) ,
N i=1
where G(y,ol) is Gaussian function, ¢° is the variance,

and 7 € R™™ is identity matrix. As mentioned above, we
assume that covariance matrix is held constant. Then, if we
assume p(x) of Tsallis entropy to f(y,a), The Tsallis

entropy becomes:
T 1 q 1
s =-——(1-jp(x) dx)=~—(1—V(ai)) :
q-1 -7 ogq-l

q

1 N

Via,)= f{——ZG(y—a‘.,crzl)} dy
N i=1

When g > 1,V (a,) becomes smaller, entropy becomes larger,

and when g<1, V(q,) becomes larger, entropy becomes

ITC-CSCC 2002



larger. Thus using V(g,) in the learning of Multilayer

perceptrons (MLP), we can adapt it in the back propagation
method to minimamize ¥ (q, ), in an unsupervised mode.

4. Experimental Results
We show two experimental results. The first experiment is
learning results for several distributions of an input data set,
in order to see the dependency of the learning on the
information order g for a fixed o. Next, we consider the

dependency of the learning on the standard deviation o of
the assumed input data distribution for a fixed q. The

learning problem is to classify given samples into two
categories.

4.1 Dependency on the information order g

In first experiment, we select 2 sets of 250 samples belong
1o differ distribution each other, intentionally. We mix these
samples, use these mixed samples as input of MLP(2-4-1)
with information theoretic learning with maximizing Tsalilis
entropy. When a quantity of entropy increasing becomes
under the regulation, learning is over. But this learning is
under the control of initializing the learning weight and
threshold, so we present the mean result of the 10 times
results.

Figure 1 shows the output of MLP for several distributions.
All of them, we set & =0.1. Upper 3 graphs ( fig.(b)-(d) ),
we set distributions of samples crossed at a tip ( input
samples : fig.(a) ). Middle 3 graphs ( fig.(f)-(h) ), we set the
distributions of samples crossed at the center ( input
samples : fig.(e) ). We consider these results satisfy the
distributions of samples. Notice, difference of g makes
small effects to the output result, e.g. curvature of a border
line, but it don’t make the effect for the result of learning.
Next, we set distributions of samples no-crossed ( input
samples : fig.(i) ), but the result of it doesn’t satisfy the
distributions of samples. Then, we change ¢ from 0.1 to
0.35 and do the same process.The result becomes bottom 3
graphs ( fig.(b)-(d) ), which satisfy the distributions of
samples.

Figure 2 shows the iteration times for each distributions. It
shows that, though values of each graphs is different, but
shape of the line has the similarity. By this graphs, we can
also regard that the difference of g makes small effects to

the output result.

(b):(g=04)

X

(a):(input sample)

£ -4

5 4 2

2 0 2 4 8

5 4 2 ) 2z 4
(e):(input sample)

-4

H:(g=04)
4 2 3 2 4 & ]

6

-6

(2):(g=1.6)

(M:(g=04

2

-4

2 4

¥):(g=1.6) (M:(g=2.4)

Figure 1:output of MLP for several distribution of input
data. Sample datas are ploted on the left-top ( symbol of
cross and symbol of box ). Difference of brightness ( from
lightness to darkness or its contrary ) mean the border of
the cluster. In this case, since we suppose two clusters,
darkness region is certaion region and others are uncertain
region.

4.2 Dependency on the standard deviation o
In the second experiment, based on the first experiment, we
make experiment about ¢.
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For easily, ¢ is fixed 2, the distributions of samples are set

artificially no-cross ( like Figure 1-(i) ). We select two sets
of 100 samples which are given the same process like as
first experiment. We set the mean vector and covariance
matrix of the distributions of samples as

e

(d=10,15,20,25,3.0),

Z‘=22=[0 0.5

And we do the same process as first experiment.

The light-gray line at the left panels of Figure 3 shows the
error between a desired response and the output for o
culculated with MSE. Though this learning is in
unsupervised mode, so we can’t know a desired response,
but to make sample set separated, this error becomes

1 N
Tv—;z(l—lxi f,~15x <1
i=l

Dark-gray line shows the reliability of learning for o .
Reliability of learning is calculated by fault trials within
100 trials, so if the value of reliability is low, it means
reliabilitiy is high. Fault means that learning is over by
entropy increasing becomes under the regulation before
sufficient iterations. Right panels of figure 3 shows the
iteration time for ¢. In Figure 3, the curves of MSE of and
iteration time are the mean by successful trials of 100 trials.
These figures show, whatever is d, when ¢ is too small,
result of learning is fault, and when ¢ is too large, resuit of
learning becomes better but iterations becomes larger in
vain and reliability of learning becomes lower. This mean
that the determinant of suitable ¢ may be related with the
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Figure 2:Iteration times for q.

distribution of the sample mostly. We can see that round
o =0.4 is the most suitable for these distributions. We
notice, when we set ¢ =0.1 like first experiment, output
result doesn’t become a good thing. It tells us how import
to set g for suitable value.

As features about d, when ¢ =0.2, reliability shows the
singular wave, and when ¢ = (.1, iteration times shows the
singular wave, following the changing of d. This is one of
the problems to make clear.
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Figure 3:The results of the second experiment. Each left
figure shows the error between a desired response and the
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output ( light-gray line ), and reliability ( dark-gray line )
for 0. Right figures show the iteration times we needed to
learn.

5. Conclusion
We considered about information theoretic learning with
maximizing Tsallis entropy for several information order g,
and showed some experiments. The Tsallis entropy is one
of the generalized entropy and is a canonical entropy in the
sense of physics. From our experiments, the ¢ dependency

of output result is not so large, but ¢ dependence of output
result is quite severe. The determination of a suitable ¢ is
related with the distribution of the sample mostly.
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