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Taking Only Discrete Values
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Abstract: This paper presents a design of FIR near-
equiripple Nyquist filters having zero-intersymbol inter-
ference (ISI) and low sensitivity to timing jitter, with
coefficients taking only discrete values. Using an affine
scaling linear programming algorithm, an optimum dis-
crete coefficient set can be obtained in a feasible com-
putational time.

Also presented is a pipelined multiplier-free FIR filter
realization with periodically time-varying (PTV) coeffi-
cients based on a hybrid form suitable for Nyquist fil-
ter. The realization exploits the coefficient symmetry
to reduce the hardware by about one half. High speed
computation and low power consumption are achieved
by its pipelined and low fan-out structure.

1. Introduction

Nyquist or Mth-band filters are used in digital sig-
nal processing applications, such as filter banks, non-
uniform sampling, and interpolation [1]. In commu-
nications, they are found in antenna array design and
pulse shaping for zero intersymbol interference (ISI) [2).
The impulse responses of continuous-time Nyquist fil-
ters have zero-crossings at every T seconds, where T is
the bit duration of the transmitted data. For digital
Nyquist filters, the sampling rate (1/7}) is chosen such
that the zero-crossings are exactly at the sampling in-
stants. That is, all coefficients at multiples of M are
zero except the center coefficient, where M = T'/T,.

The challenge of Nyquist filter design is to find a fi-
nite set of coefficients which satisfies the zero ISI crite-
rion and has low sensitivity to timing jitter (low side-
lobe energy) (3]. In addition, it is desirable to have an
equiripple frequency response [4]. Recently, Farhang-
Boroujeny and Mathew (2] proposed a new technique
for designing Nyquist filters with the above criteria. It
is based on windowing method and Remez exchange al-
gorithm. However, the exact zero-crossings may be lost
after applying the Remez algorithm.

In this paper, we propose a Nyquist filter design based
on the above three criteria, as well as having discrete-
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valued coefficients. The design is based on an affine
scaling linear programming (LP) algorithm [5]. Unlike
[2], exact zero crossings are obtained. By changing a
weighting factor, a tradeoff between frequency-response
ripples and impulse-response sidelobe energy is possible.

2. Problem Formulation

2.1 Minimizing Peak Error in the Frequency
Domain

Consider a linear-phase filter H(w) of length N with
symmetric (or antisymmetric) coefficients written as

N-1 ) L
Hw) =Y h(n)e™" =3 a(i)irigw,i), (1)
i=1

n=0

where trig(w,?) denotes an appropriate trigonometric
function, a(?) is a function of the filter coefficients A(j),
and L is the number of coefficients after counting each
pair of symmetric/antisymmetric coefficients as one.
A Nyquist filter is a lowpass filter with odd length,
with, L = (N +1)/2, a(1) = A((N —1)/2), a(i) =
2h((N + 1)/2 — i) for i # 1, trig(w, i) = cos{w(i ~ 1)),
and h(jM + (N —1)/2) = 0 for j # 0. We shall use 1o
to denote a @ x 1 vector with all elements equal to one,
0g to denote a Q x 1 zero vector, 0pg to denote P x Q
zero matrix, and I p to denote P x P identity matrix.

Let H;(w) be the response of the ideal (target) filter.
We wish to find H{w) that minimizes the weighted peak
error

E= ogggﬂw(w)lflt(w) - H(w)|, (2

where W (w) is a non-negative weighting function which
is zero in the transition band. Using Q frequency points,
an LP optimization problem can be formulated as

min € (3)
subject to

H,-Ta<elgand —H;+Ta<eslog, (4)
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where
H; =] W(w)H(w) W (wa) Hi(w) I
a=[a) a2 ... ol)]

W (wy)trig(ws, 1)

W (wq)trig(ws, 1)

W (wy )trig(ws, L)
T W (w2 )trig(wa, L)

W (wq)triglwq,1) -+ W(wo)trig(wa,L)

2.2 Minimizing the Absolute Summation of
Sidelobe in the Time Domain

To reduce the effect of timing jitter, the sidelobe en-
ergy of the impulse response should be minimized (3],
subject to a constant total energy. This can be formu-
lated as a least mean square {L2) problem, but it is not
suitable for LP algorithm. Therefore, we use L error
criterion instead. The objective is to minimize the ab-
golute summation of the sidelobe of a,

L

E,= ) laG) (5)

i=M+1
subject to the constant total absolute summation of a,

L
E, = Z la(z)l (6)
i=1
The L; error criterion can be formulated as
P
min Z & (1) ()
=1

subject to
la(i + M)|/Eo <€), 1<i< P, (8)

where P = L — M is the number of sidelobe coefficients
and €;(z) denotes the upper bound of |a(M +1){/E,. E,
can be estimated from the coeflicients a in the previous
iteration. In matrix form, (7) can be written as

rxzin 1pe; subject to —Da<e andDa<e, (9)

where ¢ = [e(1) €(2)...¢(P)T and D =

[0pm Ip/E,).
2.3 Nyquist Constraint

A Nyquist filter is usually designed as a lowpass FIR
filter having cut-off frequency at n/M. Its impulse re-
sponse must satisfy the constraint

a(n) = /M, n=1

0 n=kM+1,k=12,...,1
where [ = [(L — 1)/M], the interger part of (L —1)/M.
The passband and stopband edges of a Nyquist filter are

normally given by (1~ 8)r/M and (1+ B8)7 /M, where §
is the roll-off factor. The constraint (10) can be written

as
—Ca< -l and Ca<l (11)

wherel = [4 0 ... 0]T and C = [§; ip41 ... ims]7,
with £, denoting the k-th column of the L x L identity
matrix. The size of C is (1 +1) x L.

(10)

2.4 Combined Criterion

The design problem based on the three design con-
straints (3), (9), and (11) can be expressed as an LP
problem as

max bTw subject to ATw <e, (12)
where
b = [0F 1 ML [T
w = [-a" —¢ - |7
¢c = [-HF HT 1T 1T of of |7
T 1T ¢T -ct pT -pT
A = 1 13 o of of oFf

0pg Opg Opx Opx Ip Ip

Here, ) is a positive weighting factor. A higher A places
less energy in the sidelobe coefficients, but it increases
the stopband ripples. Therefore, the choice of A provides
a tradeoff.

The problem given by (12) is called the dual problem
in LP optimization. Its associated minimization prob-
lem, called the primal problem, is

min ¢’z subject to Az =bandz >0r (13)
where R = 2Q + 2( + 1) + 2P and 2 =
[T Te2 Te1 Te2 Tay Tao)” is the vector of variables to be
solved, with 241 and ;2 being 1 x @ vectors, Z.; and ¢
being 1 x {{ + 1) vectors, and z41 and z4; being 1 x P
vectors.

In the primal-dual problem, solving (12) yields the
same result as solving (13). Specifically, the solution w
of (12) is related to the solution z of (13) by Tz = $Tw.
An affine scaling algorithm [5] can then be applied to
solve the above primal-dual problem. Discrete coeffi-
cients can be obtained by rounding the step direction
vector during each iteration in the algorithm. Detail of
the algorithm is omitted in this paper due to the space
limitation.

3. Example

The same design specification of a Nyquist filter as
[2] is illustrated here. The filter length N is 145, the
oversampling factor M is 8, and the roll-off factor 8
is 0.5. The results are compared to the conventional
raised cosine Nyquist filter with real coefficients. Unlike
the algorithm in [2], the proposed algorithm can obtain
a filter with discrete coefficients and with exact zero ISL
Figure 1 shows the impulse and frequency responses of
the resulting Nyquist filters whose coefficients are 6-digit
radix-4 numbers. The ripples are near but not exactly
equiripple due to the discrete values of the coefficients.
Tradeoff between sidelobe energy in the time domain
and peak ripple error in the frequency domain is ob-
served as A changes. We see from the magnification of
the impulse responses that the two designs with A = 0.2
and 0.01 have exact zero crossings, with less sidelobe
energy than the raised cosine design.

Because the filter coefficients in [2] are not available,
we cannot compare it with our designs.
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Figure 1. Nyquist FIR filter designed using the proposed
algorithm with discrete coefficients and raised co-
sine filter.

4. Hybrid Realizations

The two canonical structures of FIR filters, the direct
and transposed forms, suffer from significant drawbacks.
The direct form has a long critical delay path of succes-
sive additions which hinders the processing speed. The
transposed form is good in terms of speed due to its
pipelined architecture, but it consumes more power due
to high signal fan-out.

Figure 2. Hybrid form of FIR filter.

A hybrid form [6] of FIR filter is a compromise be-
tween the direct and transposed forms. The long critical
delay path of the direct form is reduced by a modular
and pipelined structure without introducing extra la-
tency. Figure 2 shows a hybrid form comprising 3-tap
modules.

It is observed that a hybrid form with M-tap modules

Figure 3. Hybrid form of Nyquist FIR filter.

is suitable for a Nyquist filter with over-sampling factor
M. Since every M-th coefficient is zero, the critical
path delay is minimized to the propagation delay of one
multiplier and one adder, which is the same as that of
the transposed form. Also, the maximum signal fan-out
is M —1. Hence, a high-speed and low-power structure is
achieved. Figure 3 shows a hybrid structure of a 17-tap
Nyquist filter with symmetric coefficients and M = 3.
It comprises 3-tap modules with the last coefficient of
each module being zero. The delay d(K) denotes K
delay units.

Due to the discrete-valued coefficients with short
word-length, we can obtain a multiplier-free realization
for FIR Nyquist filters using the hybrid form with peri-
odically time-varying (PTV) coefficients. Let the coef-
ficient a; be written in the signed-digit radix-r number

as
g—1
a;=A E agr™!
=0

where ay € {0,%1} for r = 2 and a; € {0,%1,£2}
for r = 4. The constant A is a power-of-two (POT)
constant normalizing the range of the representation to
cover the range of a;. Letting ¢ = JK, (14) can be
written as

(14)

Yij (k)r'jr"(K'l"")" (15)

where 7i;(k) = a(j1q-J~JK)- For the example in Sec-
tion 3, r = 4, JK = ¢q = 6, and ;;(k) € {0,%1,%2},
which can be implemented without hardware muitiplier.
Wecanuse J=1land K=6,or J=2and K =3, or
J=3and K=2,orJ=6and K =1.

In (15), the filter coefficient a; is expressed in 2 di-
mensions (j and k). The variable j represents distribu-
tion of the computation in space while the variable k
represents distribution of the computation in time.

The proposed PTV structure is shown in Figure 4,
where < - > g denotes modulo K. The coefficient v;;(m)
is periodic with period K. ZOI(K) is a zeroth-order
interpolator. Its output simply repeats each input value
K times at K times faster signal rate. The binary-tree
shift and sum (BTSS) unit collects the results that were
distributively computed in space, while the scale-and-
downsample (SAD) unit collects the results that were
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Figure 4. Proposed PTV multiplier-free realization.

distributively computed in time. The block of tap delay
line is the same as that in Figure 3.

Besides exploiting the coefficient symmetry, it should
be mentioned here that Figure 4 places most of the shifts
followed by addition towards the back end of the struc-
ture (BTSS and SAD units), so that hardware can be
reduced due to the shorter wordlength required by the
adders.

5. Conclusion

A design of FIR Nyquist filters with zero-ISI and low
sensitivity to timing jitter is presented. The design is
based on an affine scaling LP algorithm. The problem is
formulated based on three constraints: the Nyquist cri-
terion, the Lo, criterion of ripple error in the frequency
domain, and the L, criterion of the sidelobe energy in
the time domain. The algorithm provides flexible trade-
off between robustness to timing jitter and stopband at-
tenuation. Also, discrete coefficients can be obtained in
a feasible computational time.

In addition, an efficient PTV multiplier-free realiza-
tion based on a hybrid form is proposed. Its hybrid
structure yields high speed computation and low power
consumption.
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