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!4bstract - The paper presents the analysis and results of
traffic measurements in the 155 Mbit/s real working ATM
backbone network. The traffic is described as an ordered
sequence of real-time cells. In this paper we analyze two
timescales in which some form of a stochastic process is
taking place: cell scale and burst scale. We present another
way to describe the cell flow in ATM networks by definition
the function, designed to be the probability of the burst of
length ! in n sequential slots.

Index terms - ATM technology, traffic statistics, Markov
chains.

1 INTRODUCTION

ATM is popular now because of its high QoS
characteristic, despite its high price and complexity.
Acquisition of high-speed statistics is a critical issue in the
world of data communications. The comprehension of
ATM traffic characteristics is of particular importance for
the future of ATM networks in the areas of network
protocols, architecture design, congestion control and
performance modeling. To manage the traffic implications
of all types of connections, we should return to the basic
principles of traffic statistics. There are two basic
‘modeling approaches: simulation and analysis. Simulation
models are very useful in investigating the detailed
operation of an ATM system. A simulation is usually
much more accurate than analysis, but can become a
formidable computational task when trying to simulate the
performance of a large network. Analysis can be less
computationally intensive, but is often inaccurate.

Realistic source and switch traffic models are not
currently amenable to direct analysis. The results
presented in different publications provide only
approximations under certain circumstances. Such
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approximate methods may have large inaccuracies, which
can only be ascertained by actual tests [1].

Investigation of cell flows in ATM networks is an
actual problem. An appropriate statistics is a basis for
developing the probabilistic models of ATM switching
nodes and end-to-end connections. The traditional data
flow models of Bernoulli or Poisson type appear to be not
realistic in ATM networks. This has been extensively
studied in recent years, and there is a large volume of
published work on the subject [2-3]). New more realistic
models can be structured on the basis of tests performed
on the working network. A number of such models have
been developed recently for a mesh-oriented topology of
an ATM network. Such models are based on the concepts
of Markov modulated Bernoulli process and Markov
modulated Poisson process. Markov processes are popular
in modeling because they can model processes with
memory and their theory is well developed. However, up
to now there is lack of experimental cell flow statistics
referring to the backbone ring topology of ATM network.

In this research we are interested in different
timescales in which some form of a stochastic process is
taking place. The advantage of analyzing traffic over
different timescales is that each timescale gives
information on the validity of the assumptions used at a
shorter timescale [4].

The timescales at which we can find stochastic
processes that are important to our understanding of the
traffic are cell scale and burst scale. Cell scale is the
timescale that considers the multiplexing of cells using a
first-in-first-out queuing buffer, which is at the heart of
every ATM switch. At the burst scale, we are interested in
phenomena that can cause modulation of the cell rate over
short time periods.

The paper is organized as follows. In Section 2
we present the network topology of the real working ATM
network, the organization of experiments and the Markov
mode] for cell flows. In Section 3 we demonstrate the
results of the experiments.
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2 ORGANIZATION OF EXPERIMENTS AND
CALCULATIONS

As noted above, there is a lack of experimental
data on ATM cell flows. In order to obtain statistics on
data flows and to process it, we used an ATM backbone
network that is installed at Bar-llan University. The
topological state of the ATM network is presented in
Figure 1. There are connections from LAN hosts to
external WANs. The various types of connections with
LANs and WANSs are performed by means of ATM
switches. The University ATM network incorporates a
number of Ethernet LANs which are allocated in different
buildings on campus. To obtain statistics from a real
working ATM network we used the RADCOM PrismLite.

LN / N
s

e ATM 155 WS
e Ethomat 1V100 Mg

Figure 1. Network topology

The following values form a sample of real ATM
traffic:
1010%10'"1010...

The exponents are run lengths; i.e., 0"denotes a run

of 14 consecutive slots, and 1 denotes the cell.

The first step in the evaluation of the statistical
behavior of the cell arrival process will be the building of
the k-order (k = 2) Markov chain that is characterized by
the probability transition matrix:

P ={Poo pmJ’
Pw Pu
where p,, is the probability that there was another cell
after the cell, p,, is the probability that there was an

empty slot after an empty slot, p,, is the probability that

there was a cell after an empty slot and p,, is the

probability that there was an empty slot after the cell.
Another way to describe the cell flow in ATM
network is by bursts. We process the sequence of cells-

slots, searching for a specific burst (for example, burst
“0001”, where 1 is cell and 0 is slot). So, we have the
sequence of “burst, no-burst” of the original cells-slots
sequence. We define the probability transition matrix for

burst scale:
0 =[qoo qox]‘
o I

where ¢, is the probability that there was a burst after the
burst, g, is the probability that there was an empty slot
after an empty slot, g, is the probability that there was a

cell after an empty slot and g, is the probability that

there was an empty slot after the cell.
We define the function P(i, n) as the probablhty

of i cells in n sequential slots and P (l,n) as the cell

distribution based on the Markov model. The Markov
model is a powerful tool for modeling stochastic random
processes. This model is general enough for modeling with
high accuracy a large variety of processes and is relatively
simple allowing us to compute analytically many
important parameters of the process that are very difficult
to calculate for other models. Another advantage of using
the Markov model is the existence of powerful algorithms
for fitting them to experimental data and approximating
other processes. Many papers use the Markov models to
mode! channels with memory. We use the model of Gilbert
that initiated the study of the Markov models for real
communication channels. His model is popular because of
its simplicity [10]. The analysis of cell distribution based
on experimental data, and the analysis of cell distribution
based on the Markov model, are presented in [6]. Now, we
define the function Q(l, n), as the probability of the burst

of length [ in n sequential slots and the function O'(/,n)as

the cell distribution based on the Markov model.
We define the function Q(, »n) as the probability
of [ cells in n sequential slots by the formula {7]:

0. n)=[qy/(qe +910)] GO 1 +[q4/(Go1 +Gro)]
B, n).

The functions G(I, n) and B(l, n) are calculated by the
recursive formulas:

G, n) = G(, n-1) gk + B(l, n-1) qo, k + G(I-1, n-I)
ook’ + B(l-1, n-1) q,, k',

B@, n) = B(, n-1) g, h + GQ, n-1) q,oh +B(-1, n-1)
qnh’ +G(l-1,n-1) qoh’,

G(0, m)=k, B(0, m)=h,
G(l, m=k’,  B(l, m)=h’,
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G, n) =B(, n) =0, if1<0 or I>n.

The function B(l, n) defines the probability of /
bursts in » slots with the condition that in the first m slots
there was a burst. The function G(, n) defines the
probability of / bursts in n slots with the condition that the
first m slots are not the burst. Using equations, we can
write:

B(0, m)=0,
B, m)=1.

G0, m)=1,
G(1, m)=0,

Obviously, these are the final states of the recursions.

3 RESULTS

In this section we present some of the results that
we have received in our experiments in the real working
ATM network. For example, the Markov matrices of the
cell scale presentation of the traffic in our experiments and
the Markov matrices of the burst scale presentation of the
ATM traffic are:

_ [0.999852421934
B [0.999643678533
_ [0.002850848775
) {0.000294424877

0.000147578066
0.000356321467}'
0997149151225

0.999705575123}

Table 1 presents the numerical presentation of the
distribution functions P(i, n), P(@i,n), O'(I,n) and Q(, n),
when the number of slots is 2390503672132, n = 209!
and ! = "100000".

il P, n F(i,n) Ql,n) Q.([,n)
0 | 097076 | 0.969625 0.74191 | 0.73512
1 ] 0.02798 | 0.029905 0.23086 | 0.22566
2 ] 0.00101 0.000465 0.01742 | 0.03518
3 ] 0.00016 | 0.000048 0.0046 0.00371

Table 1: Numerical presentation of Pfi, n), P(,n),

O'(I,n) and O, n).

Figures 2-5 presents the P(,n) function, the

function Q'(l, n) and the experimental functions P@, »)
and O(I, n). We compared the experimental and theoretical
distributions on the basis of the omega-squared criteria [6].

1
0.1
0.01 H ~—P(i, 1)
~~— i, n}
o 0.001
0.0001 1
0.00001

Fi.n

Figure 2: Graphical Representation of P(i, n) and O, n),
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Figure 3: Graphical Representation of Pfi, n) and Q(, n),
1="100000".
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Figure 4: Graphical Representation of P(i, n) and P (i,n).
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Figure 5: Graphical Representation of O, n) and Q'(l,n),
1="100000".

Figure 2 shows that the distributions based on the
cell and the burst scales are similar. The reason for this is
the little size of the burst that was chosen for the
experiments. On the other hand, on the Figure 3 we can
see that the distributions based on the cell scale and the
burst scale are not close enough. The reason is that the
actual burst size is hard to predict. This makes it difficult
to produce any reliable model using this technique.

The cell distributions based on the experimental data,
and cell distributions based on the simple Markov model
in the cell and burst scales are not close (see Figures [4-
5]). It means that there is a need for an experimental
algorithm with a more complicated process of theoretical
definition of P(i, n) and Q(I, n).

4 CONCLUSIONS

The results of traffic measurements in the 155
Mbit's ATM backbone network were presented and
analyzed. The traffic was presented as a collection of real -
time cell sequence. The evaluation of cell flow
characteristics in a real working ATM network was
presented as well. The cell distributions based on
experimental data and the cell distributions based on the
simple Markov model were anatyzed and presented in two
timescales: the cell scale and the burst scale. The complex
Markov chain model must be further developed to
structure ATM cell flow in the backbone network. As
more information about the traffic characteristics are
obtained, these should be fed back into the modeling
effort. For this reason, modeling has a close relationship to
the performance measurement aspects of network
management.

5 ACKNOWLEDGMENTS

This article is dedicated to the memory of my late
supervisor, Dr. Yuri Zlotnikov. The author thanks Prof. E.
Merzbach and Dr. A. Frank of Bar-Ilan University for
their help in this work.

6 REFERENCES

[1} E. McDysan and D.L. Spohn, “ATM Theory and Application”,
McGraw-Hill, Inc., 1995,

2] G.-L. Li and F.-M. Li, “An Analysis of Impact of Correlated
Traffic on Performance of ATM Networks,” in ATM Networks
Performance Modelling and Analysis, Vol. 3, Chapman and Hall,
1997.

3] B. Tsybakov and N. Georganos, “On Self-Similar Traffic in
ATM Queues: Definitions, Overflow Probability Bound, and Cell
Delay Distribution,” IEEE/ACM Transactions on Networking, Vol.
S, pp- 397-408, 1997.

4] JM. Pitts and J.A. Schormans, “Introduction to ATM Design
and Performance”, John Wiley & Sons Ltd., 1996.

5] V.I. Romanovsky, “Discrete Markov Chains”, Wolters-
Noordhoff Publishing, 1970.

(6] E. Rozenshine, “Approximation of ATM cell flows by Markov
models”, SCS, Prague, 2001.

M S.I. Samoilenke (Editor), “Statistics of errors” (in Russian),
Moscow, 1966.

(8} N.V. Smirnov and E.V. Dunin-Parkovsky, “Probability Theory
and Mathematical Statistics for Technical Application” (in
Russian), Moscow, 1965.

9 M. Sexton and A. Reid, “Broadband Networking: ATM, SDH,
and SONET”, Artech House, Inc., 1997.

{10} E.N. Gilbert, “Capacity of a Burst-Noise Channel”, The Bell
System Technical Journal, pp. 1253-1265, Sep. 1960.

11 S.M. Ross, “Introduction to Probability Models”, Academic
Press. Inc., 1980.

Emily Rozenshine-Kemelmacher received the B.Sc.
and M.S. degrees in computer science and statistics from
Bar-Ilan University, Israel, in 1996 and 1998 respectively.
She is currently working toward the Ph.D. degree in
computer science at Bar-Ilan University, Israel.

She is a Research Assistant in the Department of
Computer Science and Mathematics, Bar-Ilan University,
since 1997.

Her current research is on the architectural, protocol,
quality of service and traffic management issues in ATM
backbone network.

ITC-CSCC 2002



