An Algebraic Approach to Validation of
Class Diagram with Constraints

Kazuki Munakata and Kokichi Futatsugi
Graduate School of Information Science,
Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Tastunokuchi, Nomi, Ishikawa, 923-1292 Japan
E-mail: {kmunaka, kokichi}@jaist.ac.jp

Abstract: In this paper, we propose Class Diagram
With Constraints (CDWC) as an object oriented mod-
eling technique which makes validation possible in soft-
ware development. CDWC is a simple and basic model
for the object oriented analysis, and has a reasonable
strictness for software developers. CDWC consists of
class diagrams and constraints (invariant and pre/post
conditions), using UML and a subset of OCL. We intro-
duce a method of validation of CDWC using the verifica-
tion technique of algebraic formal specification language
CafeOBJ.

1. Introduction

In object oriented analysis, the target system is spec-
ified in the view point of objects, traditionally with
graphical notation. Therefore, it is eagy for a practical
developer to specify with the notation. As object ori-
ented modeling language, Unified Modeling Language
(UML)(5] is standard one. UML is based on some di-
agrams for graphical modeling. Such an object ori-
ented modeling becomes popular in developers, and con-
tributes to the productivity of software development.
However, validation of the specifications (e.g. specifica-
tions using UML diagrams) is not available because of
the lack of strictness. Therefore, object oriented model-
ing method with reasonable strictness which makes val-
idation possible, is desired.

One of the approaches for that is the textual descrip-
tion of constraints (i.e. invariant, pre/post conditions
for attributes or operations of objects) as the annota-
tion for graphical diagrams. The advantage of describ-
ing constraints to object oriented models in the analysis
phase is as follows: Firstly the ambiguity of specifica-
tions is removed and the improvement of the consistency
is expected, keeping object oriented concepts. Secondly
the property satisfied in the specification can be clarified
by the invariant constraints. This point is important as
requirement analysis. Finally, the description of con-
straints can be used as the information for validation if
constraints is described formally.)

UML contains an annotation language for UML dia-
grams, Object Constraint Language(OCL)}{4]. OCL is
a textual language to write constraints on diagrams,
declaratively. The language specification of OCL may
become big and complex one, and its formal semantics
is not defined sufficiently. Therefore it is very difficult to
support the full set of OCL for validatior. On the other
hand, there are some methodologies which attaches im-

portance to the description of constraints (e.g. Catal-
ysis, Syntropy and so on). In these methodologies, the
effective usage of constraints in object oriented mod-
eling is discussed. In Catalysis, the use of UML and
OCL is assumed. However, these methodologies are not
concerned with how to validate whether constraints are
satisfied in the specification.

In this paper, we propose class diagram with con-
straints (CDWC) as an object oriented model which
makes validation possible. CDWC is a simple and basic
model for the object oriented analysis, and has a rea-
sonable strictness for practical developers. CDWC con-
sists of class diagrams and constraints (invariant and
pre/post conditions) using UML and a subset of OCL.
We restrict OCL so as to verify, keeping the concepts
and benefits of original OCL , and we call this Simple
OCL.

Hotel Guest
numOfBed |hotel guests age
7 - sex
={male female}
checkin
Hotel

selt.numOfBed >= self.guests->size

otel :: n(g.Gue
pre: not self.guests->includes(g)
and seif.numOfBed > self.guests->size
post: self.guests->size = self.guests@pre->size + 1
and seff.guest->inuciudes(g)

Figure 1. the Class Diagram with Constraints

Our basic approach for validation of this model is
to translate it into a formal specification language.
CafeOBIJ[1] is an algebraic specification language. It
has a rigorous logical semantics, and can treat object
oriented concepts. Moreover it can execute specifica-
tions as an environment for supports of its verification.

" Therefore, we use CafeOBJ for validation of CDWC.

The remainder of this paper is organized as follows:
Section 2 introduce an overview of CafeOBJ as pre-
liminaries. Section 3 gives the basic concept and the
notation of CDWC (including simple OCL). Section 4
presents the translation rule from CDWC into CafeOBJ
specification (called behavioural specification), and by
this we give semantics to CDWC. Section 5 shows a
method of validation of CDWC with CafeOBJ environ-
ment. Section 6 mentions related works. Finally we
concludes this paper in Section 7.

ITC-CSCC 2002

2. Preliminaries

In this section, we are going to explain briefly
the basic concepts of algebraic specification language
CafeOBJ, and especially the idea of behavioural speci-
fication.

2.1 Algebraic Specification Language CafeOBJ

CafeOBJ[1] is multi-paradigm algebraic specification
language which successor of OBJ. CafeOBJ is exe-
cutable which means that it can be used for rapid proto-
typing and theorem proving. CafeOBJ is based on the
combination of several logic consisting of order sorted
algebra, hidden algebra and rewriting logic.

2.2 Behavioural Specification

Generally, behavioural specifications are specifica-
tions that abstract their structure and focus on their
behaviour by using observations of the systems. In
CafeOBJ, we call a specification behavioural specifica-
tion if it is based on hidden algebra[2]. One of the ad-
vantage of this is we can abstractly specify systems and
focus on their important properties. In hidden algebra,
a system is regarded as a kind of black box in the sense
that we can observe its state only by using special op-
erators called observation. The state of a system can be
changed only by using special operators called action.

3. Class Diagrams with Constraints
(CDWCQ)

In this section, we propose Class Diagram With Con-
straints (CDWC), as an object oriented model which
makes the semantic analysis possible.

3.1 Basic Concept

In general, a class diagram characterizes only the
structural aspect of a system. However, CDWC sup-
ports not only the description of static structure but also
a dynamical aspect, that is the description of how the
state of an object changes by the apply of the method.
We regard a object as an abstract state machine, and
we think that the basic concept of object oriented mod-
eling is the description of the whole effect which each
objects have during changing the state of the other ob-
ject. Therefore, it is reasonable to suppose that CDWC
is basic model for object oriented analysis. In CDWC,
a semantic analysis is available, that is COWC provides
validation of invariant conditions and simulated execu-
tion.

3.2 Notation

A CDWOC specification consists of the graphical part
(written with UML class diagram) and the textual part
(written with Simple OCL).

Class Diagram:

A Class diagram consists of the class boxes and the as-
sociations. A class box has class the name field, the
attribute field and the operation field, basically accord-
ing to UML class notation. In CDWC, there are some

restrictions. The visibilities of all attributes and oper-
ations are public. Each attribute has an initial value.
Moreover, each operation is a setting method, i.e. the
state of the class must be changed when the operation is
applied. In Simple OCL, it is possible to refer the value
of attributes without getting methods.

There are three kinds of associations, a relation, an
aggregation and an inheritance. An association consists
of the role names and the multiplicities. A relation has
bi-directional navigability. The notation and semantics
of association accord with UML’s association basically.
Simple OCL:

‘We can declare invariant conditions to attributes and
pre/post conditions to operations with OCL. Simple
OCL is a subset of OCL, whose expressions are special-
ized for validations. Simple OCL supports original OCL
important concepts (such as a model type, a collection
type, a navigation through the associations, and a multi-
plicity constraint). Although Simple OCL is restricted,
we can describe a constraint for attribute values and
effects of operations. The effects of a operation is de-
scribed by changes between the values of attributes im-
mediately before and after the operation has happened.
The most typical assertion for describing the effects is a
Simple OCL expression (s_ocl exp) whose form is

context Class :: operation(...)
[object]. [attribute] =
F([object]. [attribute]@pre)

where [object].[attributel in the left-hand side
and [object]. [attributel@pre in the right-hand side
are the attribute values immediately after and before
the operation has happened, respectively, and F is
a function. A s.ocl exp has the context (Class ::
operation(...)) which constraints belong to.

Simple OCL has types as well as original OCL, ba-
sic types (Boolean, Integer, String and Enum), Object
type and Collection type. [object] has Object type.
We can refer an attribute of the object by the dot no-
tation like [object].[attributel. An element hav-
ing Object type is self, self@pre, or self.role. By using
self.role we can describe an associated class indicated
by a role name on its association. By this notation,
it is possible to refer an attribute value of an associ-
ated class with dot navigation, like [object].[role]

. [role]. [attribute]. This is a key concept in de-
scribing the collaboration of objects. Moreover the type
of self.role is dependent on the multiplicity of role’s as-
sociation: Object type for 1 or Collection type for *
(zero or more). When self.role has Collection type, it
represents the set of associated objects. When self.role
has Collection type, it represents the set of associated
objects. For Collection type, we can use some useful col-
lection operators: size,include(o:object), and isEmpty.
For example self.role->size represents the number
of elements in the set self.role.

The following is an example of Simple OCL in the
Hotel specification.

ITC-CSCC 2002

context Hotel::checkIn (g:Guest)
post: self.guests—>size
= self.guests@pre->size + 1

This s-ocl exp shows that after checking in a hotel, the
total of guests increases by one. We show another exam-
ple of Simple OCL, which represents an invariant condi-
tion which attributes should always satisfy in all states.

context Hotel
self .num0fBed >= self.guests->size

This s-ocl exp shows that the number of the guests does
not exceed the number of the Hotel’s beds.

Since these constraints are specified declaratively (i.e.
side effect freely), CDWC is suitable for high abstract
specifications (e.g. requirement specifications).

4. Translation from CDWC
into CafeOBJ

In this section, we introduce the guiding principle of
the translation from CDWC into behavioural specifica-
tion. By the definition of the translation rule into be-
havioural specification based on hidden algebra, we at-
tempt to give the precise semantics to CDWC (i.e. UML
class diagram and Simple OCL). The basic principle of
the translation is that a class diagram corresponds to a
signature, a pre/post condition corresponds to an equa-
tion in behavioural specification. An invariant condition
corresponds to the predicate which should be validated.
A summary of the guiding principle is as follows.
Translation 1: Class Diagrams

A class corresponds to a module based on hidden al-
gebra, where state space is treated as hidden sort. A
class’s name corresponds to the name of the module and
the principal sort. An attribute and an operation corre-
spond to an observational operator and an action oper-
ator respectively. However class diagram basically cor-
responds to signature, some equations are derived from
attributes if they have the initial values. For basic types
used by the definition of attributes or operations, built-
in modules in CafeOBJ environment are imported.

An association between two classes has navigability
to each other. In behavioural specification, we use a
projection operator{3] as a special operator to refer the
other class. We prepare a meta-module (SYSTEM) for re-
alizing mutual references of associated classes. SYSTEM
module can refer each class module by the projection op-
erator. The multiplicity about an association is realized
by the parameterized projection operator with object

identifier (0ID). ‘
| CateOBJ

add-classB

- SYSTEM- - - = - = \

LA —le]

|
}
—T> projeg
|
{
|

Figure 2. the treatment of multiple association

Translation 2: Simple OCL descriptions:

A s_ocl exp is translated into equations in behavioural
specification. Simple OCL has basic type, Object type,
and Collection type). A simple type (such as Boolean,
Integer, and so on) corresponds to abstract data type
(visible sort in behavioural specification), and an ob-
ject type corresponds to a observational or an projection
operator. For collection type we prepare COLLECTION
module (which is imported to SYSTEM module). Some
examples of translation are as follows:

Example 1 of translation:

<Simple OCL assertion> <in Class modute in CafeOBJ>

context class::op(p1,....pn) = eqatr(op(p1,....pn,S))

post self.atr = F(atr(S),...,pn)
= F(sefl@pre,p1,...pn)

A post condition is translated into an eguation, natu-
rally. Here, F is a function such as basic type’s functions,
and S is a variable of the hidden sort, which corresponds
to self.

Example 2 of translation:

<in SYSTEM module in CafeOBJ>
> ceq atr(op(P,S)) = P
if atr'(class(S)) == true
ceq atr(op(P,S)) = S
if atr(class(S)) == faise

<Simple OCL assertion>
context class::op(p)

pre: self.role.atr’ = true
post: seif.atr = p

A pre condition is translated into a conditional part
of conditional equations. Navigations with association
correspond to projection operators from SYSTEM module
to each Class module.

The result of the translation from Hotel’s specifica-
tion into behavioural specification is as follows:

mod* SYSTEM{
pr(GUEST + HOTEL + COLLECTION(OBJECTID))
*[System]=

-- projection
op hotel : System -> Hotel
op guest : 0id System -> Guest
op collection : System -> Collection
-- observation
- bop pumOfBed : System -> Nat
bop age : 0id System -> Nat
bop sex : 0id System ~> Sex
-~ action

bop checkIn : 0id Nat Sex System -> System
-- equations for OCL constraint
ceq collection(checkIn(0, N, S, ©))
= add(0, collection(C))
if not(includes(0,C))
and (num0fBed(C) > size(C)) .
ceq collection(checkIn(0, N, §, C))
= collection(C)
if pot(includes(0,C))
and (num0fBed(C) == size(C)) .
ceq collection(checkIn(D, N, S, ©))
= collection(C)
if mot(includes(d,(C))
and (num0fBed(C) < size(C)) .
ceq collection(checkIn(0, N, S, C))
= collection(C)
if includes(0,C) .

ITC-CSCC 2002

5. Validation

In this section, we show validation of an invariant
condition, as an example of semantic analysis of CDWC
with CafeOBJ environment. An invariant condition is
the declaration of a property to be satisfied through all
reachable states (all snap shots). In our framework, a
snap shot including current states of all objects is de-
fined as the term of System sort in SYSTEM module.

Kin(02,21,male,ch (01,17 female,init-sys))
- hidden sort of SYSTEM

snapshotd
checkin{O3,28,male,checkin(02,21,male,
checkin(ot,17 female,init-sys)))
-~ hidden sort of SYSTEM

Figure 3. snap shots
Consider the following invariant condition.

self.num0fBed >= self.guests->size

This condition is described in behavioural specification
as follows:

num0fBed(s) >= size(s)

for all s : system. We prove the invariant condition by
the induction on System. That is, it suffices to show the
following two cases:
« Base Case:
(P(init-sys)).
o Inductive Case: Each action operator pre-
serve it (P(S) => P(operation(s)) for all
operations).
The following is a proof score of CafeOBJ according
to this principle.

It holds for the initial state

~- opening module SYSTEM

open SYSTEM

**> prove num0fBed(s) >= size(s)
**> by induction on s

**> base case (s=init-system)

: numOfBed (init-system) >= size(init-system)
red num0fBed(init-system) >= size(init-system) .
-~ should be true

*#> induction hypothesis (s = sys)
: oum0fBed(sys) >= size(sys).

eq num(fBed(hotel(sys)) >= size(collection(sys))
= true .

*»> induction step (¢ = checkIn(o, n, s, sys))
*+> case analysis for checkIn operation
**> case : include(o,sys) = true
eq includes(o, sys) = true .
red numOfBed(checkIn(o, n, s, sys))

>= size(checkIn{o, n, s, sys)) .
-~ should be true

**> case : include(o,sys) = false
eq includes(o, sys) = false .
red numQfBed(checkIn(o, n, s, sys))
>= size(checkIn(o, mn, s, sys)) .
-- should be true

**> QED for OCL invariant
close

By this validation of invariant condition, it is shown
that the property is always satisfied under the pre/post
conditions

6. Related Works

There are some studies about the semantical analy-
sis of an object model which consist of a class struc-
ture and some constraints. The concepts of Alloy[6] are
micromodels (light weight), analyzable, declarative and
structural. The concepts of our study are similar to Al-
loy’s ones. Alloy treats only static data structures (not
objects or classes). CDWC is suited to popular object
oriented modeling. Because a class is modeled as an ab-
stract state machine. In (7], the semantics of ICL (OCL
specialized in the description of an interface) is defined
with an algebraic specification language. However, the
validation of invariant constraints is not discussed.

7. Conclusion

In this paper, we have proposed CDWC as object ori-
ented model which make validation possible, the princi-
ple of the translation to CafeOBJ specification, and the
method to validate the model with CafeOBJ environ-
ment. Several studies had been made on validation of
object oriented modeling (such as UML) with a formal
approach. The key points of these studies are whether
the formalism treats naturally object oriented models,
and what is able to be validated on the formalism. In
OCL constraints are basically described by the values of
attributes. In behavioural specification the effect of an
action is specified by the result of observation. Therefore
CDWC is naturally treated in this formalism. Moreover
we have confirmed that the proof of the invariant con-
dition by structural induction is useful for validation of
an important property on object oriented analysis.

References

[1] Rézvan Diaconescu and Kokichi Futatsugi, CafeOBJ
Report: The Language, Proof Techniques, and
Methodologies, World Scientific, 1998 _

[2] Joseph Goguen and Grant Malcolm. A hidden
agenda: Technical Report CS97-538, UCSD Technical
Report, 1997

(3] Shusaku lida, Michihiro Matsumoto, Rizvan Dia-
conescu and Kokichi Futatsugi. Concurrent Object
Composition in CafeOBJ: JAIST Research Report,
IS-RR-98-0009S,1998

[4] J.Warmer and A.Kleppe. The Object Constraint
Language Precise Modeling with UML: Addison-
Wesley, 1999

[5] G.Booch et al. The Unified Modeling Language User
Guide: Addison-Wesley, 1998

[6] Daniel Jackson. Alloy: A lightweight object mod-
elling notation: Technical Report 797, MIT Labora-
tory for Computer Science, 2000 '

[7] Michel Bidoit et al. Correct Realizations of Inter-
face Constraints with OCL: UML’99, number 1723 in
LNCS, pages 399-415, Springer Verlag, 1999

ITC-CSCC 2002

