Systélh-lei/el Design Space Exploration and Resource Mapping Strategies for a
Reconfigurable Hybrid System

Seong-Yong Ahn and Jeong-A Lee
Department of Computer Engineering,
Chosun University,

Tel. +82-62-230-7711, Fax.: +82-62-233-6896
e-mail : dis@chosun.ac.kr, jalee@chosun.ac.kr

Abstract:

In this paper we proposed the design space exploration
environment of re-configurable hybrid systems and
evaluate the performance by changing design parameters.
With this, we analyzed the effect of various scheduling
methods which determine how we allocate hardware/
software resources to application program. A simple static
(fixed) mapping strategy produces almost the same
performance compared with a sophisticated dynamic
mapping strategy especially when a CPU is already busy
with its pre-assigned own tasks.

1. Introduction

Reconfigurable architecture is a hardware system which can
adapt its hardware structure to process given application
programs more efficiently while conventional architecture
implies a fixed hardware structure.[1] Although the
progress of reconfigurable systems shows advances in
performance and flexibility, the methodology and tools that
design and analyze reconfigurable systems are still
dependent on ad-hoc solutions. Especially the resource
allocation strategy for H/W-S/W partitioning and how to
configure a reconfigurable systems are difficult problems
and emerging research topics{2],41,{51,[6].

In this paper, we consider a hybrid processing architecture
composed of a conventional CPU and a FPGA among many
alternatives as a reconfigurable platform. It is 2 hard task to
find an efficient hardware configuration which satisfies
design constraints for an application and becomes harder
when a set of applications will be executed since we need to
deal with the huge design space to explore trade-offs caused
by adjustments of architecture and mapping strategy. We
adopted a design space exploration approach known as Y-
chart approach for this challenging task as it allows to
measure quantitatively the performance of different
mapping strategy from algorithms in homeogenous
hardware configurations[3].

The Y-chart Approach is a methodology to provide
designers with quantitative data after analyzing the
performance of architectures for a given set of applications.
For performance analysis, each application is mapped onto
the architecture and the performance of each application-
architecture mapping combination is evaluated. The
resulting performance numbers may inspire the architecture
designer to improve the architecture. In this paper, we
extended the Y-chart approach for a hybrid processing

architecture by developing a DSE(design space exploration)
tool.

2. DSE Tools

The DSE tool, as shown in Figure 1, a retargetable
simulator for reconfigurable system consists of three parts
which are an application simulator, a hardware simulator
and a mapping controller. We assume that the input
description for the application simulator is based on the
Kahn-Process-Network which is wildly adopted for a DSP
modeling so that the semantic gap between the application
model and architecture model is minimized. This
assumption is acceptable as there exists a CAD platform
which transforms a system description into a Kahn-Process-
Network description. We also assume that the target
reconfigurable architecture in FPGA is a stream-based
architecture so that the data-flow of the Kahn-Process-
Network can be mapped to the target architecture
transparently.

Extened Y-chart

J\j Process Network

<7 <z

Application
Sub Modules - Modefing

q E Partitioning TM
{ ; L
S/W Timing Simutation Mapping
Analysis HIW Analysis

7 T ﬁ P Table

HIW Modeling Board
Shec }
Prooess RC
Perlormance SDBO §peo
Timing analysis Data Base Number (ARM) (FRPGA)

Figure 1. The design space exploration sheme

The application simulator fed with the input of the
application model, simulates the flow of traces. We employ
Kahn process networks for the application model. In Kahn
process networks, buffers connecting to processes represent
unbounded FIFO queues. These queues automatically
buffer the output of a process and allow processes to
consume the tokens from a buffer with a blocking read.

ITC-CSCC 2002

Therefore, Kahn process networks describe applications in
a deterministic way[7].

The architecture simulator does not go through cycle-level
simulation but collects timing estimates when a function is
mapped to an architecture element. The application-
architecture mapping controller holds information about
mapping from an application program to an architecture
element.

The simulator was developed using Trace-Driven
simulation method which takes traces produced by the
application simulator and allocates them to available
hardware resources such as a CPU or a reconfigurable
FPGA. Using this tool, a designer can vary design
parameters and estimate performance numbers for each
potential mapping as a software to be run in a CPU or a
hardware configuration to be implemented, without
building a prototype. The tool can provide useful design
information including scheduling of tasks to a system
designer who wants to know which partitioning cases, i.e., a
hardware configuration satisfies the time and resource
constraints in a timely and cost-effective way.

The application simulator produces traces to model the
interactions among the sub-task of the application program.
A sub-task in the application simulator is represented by a
process. The process executes its own function, and passes
the trace to the application-architecture mapping controller.
The trace which was returned to the application simulator
via application-architecture mapping controller, gives back
to the processes that have requested the processing. Then
this process passes a trace to the next process. When a trace
produced is not consumed by other processes, it is put in
the FIFO queue.

The application-architecture mapping controller assigns a
trace to the corresponding architecture element. The
assigned architecture does not accept any other processing
requests until the processing completes. The architecture
simulator collects the processing time of each architecture
element. It can only be occupied after finishing the current
processing. A collision occurs when several sub-tasks are
mapped to the same architecture element. We will consider
several shcemes to resolve these collison.

3. Mapping Strategies

There are various ways to map hardware resources when
queued tasks are being chosen to be allocated. The mapping
strategies can be fixed in advance or dynamic depending on
the status of available hardware resources at the time. We
employ several mapping strategies, such as fixed
FCFS(first come first serve), Semi-dynamic FCFS and
priority policy, to observe its effects. Here are overviews
of these strategies.

Fixed FCFS is the simplest among them. The scheduler
doesn’t query the status of resoures. It means that each
queued task has a fixed resource for mapping.

Semi-Dynamic FCFS is similar to fixed FCFS. Unlike
fixed FCFS it query the status of resouces when collision
occurs. Another word, if a resource selected is busy, The
scheduler check availablity of other resources. If there is a
available resource, The scheduler maps the task to it,
otherwise write-backs to the waiting queue which is located
between application simulator and mapping controller.

Priority Policy sets priority of queued tasks . when the
scheduler chose a task withing the waiting queue for
mapping, it considers priority of the tasks first. A task that
is located closer to the final output(sink process) in the task
graph is assigned a higher priority.

4. Experiment

For an experiment, we consider H.263 encoder as an
application model and a hypothetical system which has a
CPU and a FPGA as a hybrid system. The data-flow for
H.263 encoder is shown in Figure 2.

MBDis;*——' DCT | Quant » MBCollect
T
j, P - v v
F ! | Initial Frame | .
[! g Dequant BltGenexatoA

- fj}‘ ' Next Frame mCT
: =]
Predict[¢-Restore{4 ~ = = 4 MBCollect

Figure 2. H.263 encoder application model

The performance metrics we used are parallelism and
utilization . The formula for these metrics are shown below
where T_end is the ending time of frame processing.

Combined Executin Time of The Workloads

Parallelism =
arallelis m T end

Time a Rseoure is Used
T_End

Utilizatio n =

Based on these metrics, we evaluate different mapping
strategies for H.263 encoder application.

ITC-CSCC 2002

End Time(ms)

Figure 3. End time of the simulation by changing CPU rate
and FPGA rate

a8

06

0a

CPU Utitization

02

0.0

50

e 150
CPU Ry,

Figure 4. CPU utilization by changing CPU rate and FPGA
rate

Figure 5. FPGA utilization by changing CPU rate and
FPGA rate

Parafisfism

Figure 6. Parallelism by changing CPU rate and FPGA rate

Figure 3-6 show end time, CPU utilization, FPGA
utilization and parallelism repectively by changing CPU
and FPGA rate. In Fingure 3, the knee point is found at the
point where CPU rate is around 150MHz and FPGA rate is
around 100 MHz. The end time is reduced remarkably as
CPU rate becomes higher, FPGA rate has a similar impact
but the slope of reduction for ending time in this case is
smoother. The graph shows that a system designer does not
need to use high-end hardware devices to achive certain
constraints. In Figure 4, we can see that CPU utilizatin is
less than 10% when CPU rate is above 250MHz and FPGA
rate is less than 50MHz. The reason is in this case CPU is
not the bottleneck for the processing any more. As shown in
the Figure 4, CPU utilization is over 80% most cases.
Especially when CPU rate is low, CPU becomes the
bottleneck of the performance. As shown in Figure 5 and 6,
when FPGA rate becomes lower and CPU rate becomes
higher, FPGA utilization and parallelism becomes higher
because the processing capacity of CPU becomes
approximately the same as that of the FPGA.

-—w— Fixed FCFS
-4 Semi-Dynamic)

30000000 -
& Priority
1 3
20000000 ¢
.
l‘.
£ 1 A
3 DN
10000000 | .
-
.
‘.\I-. - oa
L= ¥ T Sasasass
0bmep T 7 =T ~ T (| AR ™
50 100 150 200 250 300
CPU Rate

Figure 7. End time of the simulation for each scheduling
method by changing CPU rate

{TC-CSCC 2002

—a— Fixed FCFS
~®- Semi-Dynamic
4 Priority

CPU Utilization
o
8
i

! s
0.65 4
T T T L L T 1
0 50 100 150 200 250 300
CPU Rate

Figure 8. CPU utilization for each scheduling method by
changing CPU rate

—a— Fixed FCFS

05 ® - Semi-Dynamic|
A Priority
Ay ANN
044 ,
73
i

0.3 :! 4
§ R"‘
5 024 J

1 :
3
il X w
o
ot ¢
oo4 *
— 1 T T LA AL — T
0 50 100 150 200 250 300
CPU Rate

Figure 9. FPGA utilization for each scheduling method by
changing CPU rate

—u— Fixed FCFS
~@- Semi-Dynamic

404 4 Priority
] R i
Sonat
354 ;o
4 JE)
304 ' !-:i'
£ o
3 ** A
B #
a 204 -
~*
1.54 ","
o~
104 ¥
T LA) L T T T T
o 50 10 10 200 2% 300
CPU Rate

Figure 10. Parallelism for each scheduling method by
changing CPU rate

Figure 7 — 10 show end time, CPU utilization, FPGA
utilization and parallelism repectively for each scheduling
method by changing CPU rate. The results show that the

overall performance is almost the same for the scheduling
schemes we considered.

5. Conclusion

In this paper we proposed the design space exploration
environment of re-configurable hybrid systems and
evaluate the performance by changing design parameters.
With this DSE, we analyzed the performance of several
scheduling methods. From our experiments, we found out
that a simple static (fixed) mapping strategy produces
almost the same performance compared with a
sophisticated dynamic mapping strategy especially when a
CPU is already busy with its pre-assigned own tasks.
Considering the fact that the dynamic mapping strategy
implies the overhead of maintaining the data structure to
figure out the current resource usages, the simple static
mapping strategy is much better choice to implement. In
the paper, we presented the test data to support our
understanding of mapping strategies which shows different
experiments by changing the design parameters, especially
the load of CPU with control intensive jobs and various
processing capabilities of CPU and FPGAs,

References

1] O. T. Albahama, P. Cheung, and T.J. Clarke, "On the
Viability of FPGA-Based Integrated Coprocessors,” In
Proceedings of IEEE Symposium of FPGAs for Custom
Computing Machines, pp. 206-215, Apr. 1996

[2] E. Sanchez. M. Sipper, J.-O. Haenni, J.-L. Beuchat, A.
Stauffer, and A. Perez-Uribe, "Static and Dynamic
Configurable Systems", IEEE Transactions on Computers
VOL.48, No.6, June 1999,

[3] B. Kienhuis, E. Deprettere, K.A. Vissers, and P. Wolf.
“An approach for quantitative analysis of application-
specific dataflow architectures”, In Proceedings of 11th Intl.
Conference of Applications-specific Systems, Architectures
and Processors (ASAP'97), pages 338-349, Zurich,
Switzerland, 1997

[4] A.C.J. Kienhuis, Design Space Exploration of Stream-
based Dataflow Architectures, PhD thesis, Delft University
of Technology, Netherlands, 1998.

[5] S. Bakshi, D. D. Gajaski, "Hardware/ Software
Partitioning and Pipelining", In Proceedings of the 34th
annual conference on Design Automation Conference, 1997,
pages 713-716

[6] A. Kalavade, P. A. Subrahmanyam,
"Hardware/Sofiware Partitioning for Multifunction
Systems", In Proceedings of International Conference on
Computer Aided Design, pages 516-521, 1997,

[7} G. Kahn, "The semantics of a simple language for
parallel programming, "Info. Proc., pages 471-475,
Stockholm, Aug. 1974

ITC-CSCC 2002

