A design technology for re-configurable MPU and software on FPGA

H.Araki'

K Harashima®

T.Kutsuwa’

! Graduate School of Engineering “Faculty of Engineering,
Osaka Iustitute of Technology
5-16-1, Omiya Asahi-ku, Osaka, 535-8585 Japan
¢-mail araki@kesakoy .elc.oit.ac.jp, kutuwa@elc.oit.ac.jp

Abstract: FPGA is the necessary device to design of
bardware at present, it is researched on many ways of
applying to design caused by expansion of capacity in
recent years. One of these applying ways is SoC (System on
a Chip) that is proposed for realizing the basic function of a
system. For realizing SoC efficiently, IP (InteHectual
property) is very important and developed for re-use of
bardware. A MPU for built-in exists as an IP. But almost
of MPUs at present as an IPs are lengthy and lar ge-scale for
using embedded-application. Funthermore, the function of
executing specific treatment critically is required to
embedded MPU. We propose a flexible and small scale
MPU and its design method.

1. Introduction

At present, the research for applying FPGA is more
active. And the possibility of applying FPGA is expanded
with expansion of FPGA capacity. There are branches to
research, “For Description”, “For Synthesize”, ”For Design
Device” and so on. Iu this papet, we propose about “For
Description”. Many approach are tried to many application.
One of the researches is an approach to include a MPU to
FPGA. In this research, some approaches are tried and
applied.

1) FPGA has a MPU as a hardware macro.
(Fig.1 (a)) (Hardware macro cannot be changed.)
2) FPGAhasa MPU as a software macro.
(Fig.1 (c)) (Software macro can be changed a little.)
3) FPGA has a MPU as a description with other
functions.
(Fig.1 (c)) (This MPU can be changed in full.)

We aim at the 3rd method. Because the MPU that is
made by the method is most extensive and possible. But
applying the MPU, there are some advantages and some
faults.

®We can build best MPU for an application. (advantage)
®We can use the hardware efficiently. (advantage)

® We can get a necessary speed. (advantage)

® To build the MPU is difficult. (fault)

®There is no- software development tool for the

MPU (fault)

To conquer the faults, we propose that specification
description language expresses the MPU. The proposing
includes following that.

Describe the MPU and the other hardware by the
specification description language.

Describe the software for the MPU by the specification
description language.

Improve the system re-configuration by these
descriptions.
PCB
FPGA(SOPC)
MPU
MPU H ASIC L
Memory
Memory
® ®
v
PCB PCB
FPGA FPGA(SOPC)
MPU H ASIC ; MPU]ASIC
1
Memeary
Memary
i ‘ § Fxemunus

© ®
Figure 1 Difference of implementation..

2. Technology

As described above, expansion of capacity and speed-up
of FPGA are realized in recemt years. And, the basic
composition of logic-cell is based ocu SRAM technology.
Furthermore, logic-cells for memory and random logic are
mounted separately. The effective method of characteristic
of separate logic-cells is that functional implementation is
executed by mnot hardware-logic but software-logic.
However, the implementation of critical function is
cxecuted effectively by hardwarelogic than software-logic.
The way of implementation is decided when specification
are described. To use a specific description langnage, we
can change easily the way. It is a good technique for
designing re-configurable system with a FPGA. For the
small-scale system, there are often several changes of
specifications and requirement, it is important that a change
can be easily. So, we implement a re-configurable MPU in
FPGA, and apply it to a programmable controller.
Furthermore, MPU has structural modules, and the modules
are able to change independently. Fig.1 illustrate the ways
of design with MPU in FPGA. We propose the stcture of
Figl.(d) from them. We think that the structure of FPGA is
efficiently and does not lose flexibility. In FPGA, the MPU
accedes to the ASIC by asynchronous single direction

ITC-CSCC 2002

registers to do without bus-arbitration. But the ASIC can
connect an internal bus of MPU by necessity. We can select
the way to accede from MPU to the ASIC with considering
a tradeoff between forwarding speed and transaction speed.
We offer the frame like the above. With applying the frame,
the software and the hardware can convert efficiently
between each other. The MPU that is re-configurable
structure and expressed by specifications description
language has following characters.

1) Modifying the command decoder block, a hardware
that is specific for applications can be controlled as an
additional command from software.

2) Adding some ALU, the MPU can calculate with
parallel.

3) The MPU can obtain a specific calculation unit by
changing an ALU.

4) External unit can access the register file directly.

5) External unit can access the program counter unit
directly.

Applying the characters, MPU application system can be
designed easily and quickly. Besides, the MPU can be
applied and extended flexible than other MPU that is
distributed as IP. This program for the MPU is written by
specifications description language. So the system that
includes a program can be modified uniformly. And a
program memory for the MPU is on FPGA, there is a single
controller on a printed circuit board (PCB).

Desiga flow Design flow
System design System design
{Purpose} (Purpose)
(System required) (System required)

N *

Behavior
Hardware Software L
SpecC
Cor
HDL cher
1
HDL c
FPGA ROM FPGA
(ROM)

Figure 2 Description flow.

We use "SpecC" which is a specifications description
language to realize this method. With applying "SpecC", we
can change a system to a request by a minimum
modification. "SpecC" is based on "ANSI C language" and
surpasses. On the behavior level evaluation, we can use "C
language code” is generated from "SpecC language code.
Fig.2 illustrate how difference between usual design flow
and our propose design flow. The proposal can be
confirmed delaying the decision to implement software and
hardware. To design a re-configurable system, it is
important. The codes that are described in "SpecC” for the

re-configurable system are divided to HDL (Hardware
Description Langnage) codes and C program codes. Each
code generate each object file by cach compiler. Finally, the
object file for programming to FPGA is generated by all
object files.

We develop a computer simulator based on this design
technique, and we experiment with this simulator.

3. Experiment
We develop a system controller for experiment of the
evaluation that is 8Bit MPU with motor control ugit on this
simulator.
This experiment system performs following movement.

(1) A user indicates a speed from general -purpose input.

(2) The detection of the speed is realized by measuring
electromotive force of the motor.

(3) The control of the motor is performed so that indicated
speed and a measuring speed may become the same.

(4) The motor speed is controlled as a motion with constant
angle acceleration.

Our MPU is designed suitable configuration for FPGA.
And the MPU's inside is composed of function modules.
Function modules have command-decoder, command-
controller, register-files, program-counter, stack-unit, ALU
(Arithmetic Logic Unit), command -bus, data-bus, and so on.

The command-bus connecting program-memory and
command-decoder reads a program at the address
indicated by program-counter.

The command-decoder analyzes a program which is
read-out on command-bus.

The command-controller takes control of the other
modules according to instruction of command-
decoder.

The register-files write data on data-bus to any
register of oneself and output data on any register of
oneself to data-bus according to command-controller.
The program-counter is increasing the PC-register
(program counter register) or set a value of the data-
bus to PC-register according to command -controller.
The stack-unit records the value of PC-register
according to command-controller.

The ALU outputs to data-bus the value that is
calculated according to inside register and data -bus.
The data-bus is connected to register-file, ALU, and
program-counter.

The modules exchange a value using the data-bus.
The motor control unit executes control of speed by
PWM. This control unit is connected to register -file of
MPU, and it controls motor at the non-synchronism.
MPU can access the control unit through the three
registers that are speed control register, timer register
and setup register. The value written into the registers
reflects on the system in real time except for the timer
register. The motor control unit has the input of 8Bit,
and the value reflects on the register of MPU in real
time.

ITC-CSCC 2002

Additionally, MPU has general-purpose 1/0 of 8bit,
and it is connected to the register of MPU directly.

BUS Width
Cy ble)
Program ;{(Configurable] -
Counter Y '1
. Extend VO
A Register
f File
Program & ¥ PWM
Memory ' Controlter
Command S(;'l({c'f\x;r
ister j v A/D
Registe Input
Command
Decoder A Register
T (C: el
-
Command
Controller {—-wuno

Figure 3 MPU block for experiment.

Main MPU
Bebavior Behavier

{Start)

Register
File
Behavior
RESET Reset event
— | gane v

Register
Behavior

ALU

System Clock | |Clock event Behavior
Behavior

' Selector

Behavior

Cammand

SRAM decoder

Behavior Progvam Behavior

Program Countes|
Behavior

Figure 4 Execution of simulation flow.

Next, we express about software to mount on the system.

(1) All registers are initialized.

(2) MPU reads the value of indicated speed (Wi) from
general-purpose 1/0, and sets a value to MPU register.

(3) MPU reads the value of detected speed from motor
control unit, and sets a value to MPU register (Wd).

(4) PWM is controlled following the rules.

(5) MPU calculates the revolution acceleration (Aw).
(6) MPU writes the -value of (Wd+Aw) to PWM register

(7) Repeat (2) to (6).

{Wo).

Initialize
Registers

Set Control

Speed(Wi)

Read Detect
Speed(Wd)

Diff = Wd-Wi

Aw = (Wd-Wi)/2

Aw = (Wd Wiz l

Wo = Wd+Aw

Figure 5 Control program chart for experiment.

[Bekavior MmO
MPU Bmpu...):
SRAM Bpregmem(...)

int main(veid) {
ar

parf
Bmpu.nain(};
Bprogmem(),
)
}
i
havior MPU(...){
COM_DEC Beomdec(...).

ALU Balu(...)

unsigned short int usiPC,
eventeSYSCLK:

int main(void){
par{
Beomdec. main(k
Balumain(};

}
i3

Main behavior:

This bebavior is a root of all execution. The
simulator is strting up from Main.main(. We
propcse that cbjective descriptions as like
devices are written in this behavior. We can see
the main behavior as a PCB (Print Circuit Bord).

"pal" statement:

“par” is a parallel executian. There are some
behavior calls in this statement. They execute at
the same time.

“event type:

“event” is usefu) for notification a signal to
other behaviors. The value of event type is used
“nolify " statement and “wait” stategient

Sub behaviar (hardware):

Sub behavior (hardware) has endlessloop in
cutine, Sub behavior is starting by notification
an event

Behavior Program(}{

int main(vaid){
unsigned char wcWi, ucWd , ucWe;
short int siDef , siAw;

white(rue){
uwcWi=read_reg(REG10).

write_reg(REG11ucWo),
}

siDef = (short intyWd - ...

Sub bebavior (saftware}:

Sub behavior (softwase) has endlesstoop in
outline, Because & prog ram for embedded system
is run continuously while svstem power is up.

Software for the MPU is clase on the Progrem
behavior. Program behavior does not call any
behaviors. However program behavior can call
okher behavior.

T Mazin % 5UB behavior SpecCy

Figure 6 Description examples of behavior.

(Wd-Wi) > 0 (accelerate) We
(Wd-Wi) >8 (revolution accelerate increase by 1)
(Wd-Wi) <8 (revolution accelerate increase

by(Wd-Wi)/2)

implement hardware and software of the
specifications to the MPU emulator. We make two models.
One is mounted acceleration calculating function by
hardware. The other is calculation module is mounted by
software. And we simulate about these two models.

We explain about the modules and their description for
experiment. The modules are written for "SpecC reference
compiler V1.2". This compiler is built a "C++ source code"
from "SpecC source code”. The simulator written by

(Wd-Wi) = 0 (fixed speed)

(Wd-Wi) < 0 (deceleration)

(Wd-Wi) >-8 (revolution accelerate decrease by 1)

(Wd-Wi) <-8 (revolution accelerate decrease
by(Wd-Wi)/2)

ITC-CSCC 2002

"SpecC” starts from main function of main behavior The
system which is built for experiment starts from this main
function. The following, we explain the descriptions about
the MPU and the software for the MPU. The codes that are
the experiment system written by SpecC are compiled to
the codes that are written by C++ owing to SpecC compiler.
Usually we compile the C++ code to generate a simulation
object code. However we cut off the codes about the
program for the MPU. The codes for the program are
compiled to generate object codes for the MPU. The other
codes are compiled to generate simulator codes. The
simulator loads a object code for the MPU, and executes the
code. When to build programming file for FPGA, the object
codes for the MPU merge these files. The two codes are
independent of each other and there are no problems to
compiling and executing. At the SpecC, description of a
behavior is closed and it is easy to make software a capsule.

SpecC

compiler

Object code
Transfer to
Program
memory

Ce+
source code

Hardware
source code

_—

Hardware
simulator
execute code

N—

Execute

Simulation

Software
source code

C compiler
For MPU

Object code
For MPU

HALT

Makeing object files 1
eing object fles Tow Simulation flow

(Compile flow)

Figure 7 Simulation executing flow.

The simulator behaves as hardware, the software is
executed by the MPU on the simulator. The hardware has
some independence modules and the modules are executed
independent on the simulator. The modules look like
behaviors styles. But they are described with RTL and
synchronous each other. The synchronous signals and data
paths are through the union behavior. When the modules
are added or changed, we change the union behavior and
describe controls for the module. As the above, we show
how to design a application system and design with the
MPU.

Next experiment, we compare the descriptive styles of
the MPU and each MPU that has a same style but is
described by VHDL. At first, it is impossible that to
describe hardware system include software by VHDL. If
there is software described by VHDL, it must be converted
to C language. Although that, the differences of the
execution to describe the languages appear strikingly.
When to describe software by VHDL, we must describe
carefully to avoid the problem. At the following

explapation, we do not compare the descriptive style for
software. Accordingly, We compare only re-configurable
MPU description. To evaluate about the descriptive styles,
we compare our MPU with a MPU that is decripted by
VHDL. VHDL MPU is composed of some component
block. On our proposed design method, all control signals

and data path are through a union behavior for re -
configurable MPU. They are through root architecture in

described VHDL as well. We add an ALU to each MPUs.
For this addition, the code volume of SpecC is increase
about 200bytes. The code of VHDL is increase about
400Bytes as well. Further, the number of parts to change

necessary are 3 parts for SpecC, and 8 parts for VHDL. In
our purposed design method, adding functions are complete

changing main behavior. The description of SpecC is
abstractly and we can complete changing smaller than

VHDL.

Table 1 Increase of description for adding ALU.

Spec((Main behavior) | VHDL (root Architecture) note]
Line 257 " 152 All Line pumber |
of files.
{ Size +200Kbyte +400Kbyte Toadd ALU |
Change 3 8 Points.
{Not Line)

4. Experiment result and consideration

We have shown and described how to compose MPU
that is built by modules. It has been shown that the change
and addition of each module is easily executed. We have
changed the trade-off relations between the performing
speed by the hardware and the description-easiness by the
software. Furthermore, we have confirmed that we can
realize a user demand in consideration of this trade -off. In
this paper, we have expressed that our proposed MPU and
its design technique are effective.

References

[1] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao,
Spec C: Specification Language and Methodlogy, Kluer
Academic Publishers, 2000.

[2] K. Wakabayashi, T. Okamoto,”C-Based Soc Design
Flow and EDA Tools: An ASIC and System Vendor
Perspective” in Proc. IEEE Trans. Computer -Aided
Design, Vol.19, No.12, 2000, pp.1507 -pp.1522.

[3] K. Okada, A. Yamada, T. Kambe, "Hardware
Alogorithm Optimization Using Bach C” in Proc. IEICE
Trans. Fundmentals, Vol.E85 -A, No.4, 2002, pp.835-
pp-841.

ITC-CSCC 2002

