A Rijndael Cryptoprocessor with On-the-fly Key Scheduler

Joon Hyoung Shim', Joo Yeon Bae?, Yong Kyu Kang® and Jun Rim Choi®
! School of Information Security, Kyungpook National University,
1370 Sankyuk-Dong, Book-Gu, Daegu, Korea, 702-701
Tel. +82-53-940-8667, Fax. +82-53-950-5505
2 School of Electrical Engineering, Kyungpook National University,
1370 Sankyuk-Dong, Book-Gu, Daegu, Korea, 702-701
Tel. +82-53-940-8667, Fax. +82-53-950-5505
e-mail : realface@palgong.knu.ac.kr

Abstract: We implemented a cryptoprocessor with a on-
the-fly key scheduler which performs forward key
scheduling for encryption and reverse key scheduling for
decryption. This scheduler makes the fast generation of the
key value and eliminates the memory for software key
scheduler. The 128-bit Rijndael processor is implemented
based on the proposed architecture using Verilog-HDL and
targeted to Xilinx XCV1000E FPGA device. As a result,
the 128-bit Rijndael operates at 38.8MHz with on-the-fly
key scheduler and consumes 11 cycles for encryption and
decryption resulting in a throughput of 451.5Mbps

1. Introduction

The National Institution of Standards and Technology
(NIST) chose Rijndael as the Advanced Encryption
Algorithm in October 2000 [1]. Generally, Rijndael has
been implemented in software, but a software
implementation cannot offer the physical security for the
key. In this paper, Rijndael is implemented in hardware
with on-the-fly key scheduler, which can make not only a
forward scheduling for encryption but also a reverse
scheduling for decryption. Therefore, it enhances the
physical security and an outside attacker camnot easily
modify it. In the first section, we describe Rijndael
algorithm and how to generate the round keys for
encryption and decryption respectively. In the second
section, we propose the trade-off between a c ost-effective
architecture and fast processing speed for Rijndael. The on-
the-fly key scheduler which generates round keys for
encryption and decryption is described. Finally, we analyze
the performance of the 128-bit Rijndael processor with on-
the-fly key scheduler and compare with the other
architectures in terms of processing time and chip area.

2. Rijndael Block Cipher
Rijndael is a symmetric block cipher. While other block
ciphers have Fiestel structure, it has non-Feistel structure
[3]. It supports key lengths of 128, 192, 256 bits and block
sizes of 128, 192 or 256 bits. The number of round
operation is determined by combination of key length and
block size [1].

2.1 Rijndael encryption and decryption

Rijndael encryption is illustrated in Fig. 1. The algorithm
consists of an initial round-key addition, the required
number of round and a final round. Rijndael performs
encryption by an iterative transformation called the “round

transformation”, of which inverse operation is used for
decryption and the order of the round for decryption is
reversed. The intermediate cipher result is known as the
State. The State comprises of a rectangular array of bytes as
128-bit plaintext of 16-byte, B0, BI, B2, B3, ... B1S5, as
shown in Fig. 2. Similarly, the key state is represented as a

rectangular array of bytes as shown in Fig. 3 [4].

Round Key Round Key

Genera) Round

Plain Text

Ciper Text ByteSub

Last Round

Fig. 1. Rijndael encryption
W) W(1) W) wW3)
i=o0 1 2 3 i=o 1 2 3
3

8 Bo | B« | Bs | Bn Ko | Ke | Kn | Kiz

g8{| Bi{ Bs | Bo | Bis Ki | Ks | Ks | Kns

32

8 B2 | Bs | Bio | Bu K| Ks | Ko | Kie

Ks | K2 | Kn | Kis

| Nb=4 (128bit) '

Fig. 3. Key State

Bl Bs | B7 | Bu | Bis

Nb=4 (128bity I

Fig. 2. Block State

Each round is composed of the following four operations:

1. The ByteSub transformation is a non-linear byte
substitution, operating on each of the state bytes
independently.

2. In ShiftRow, the rows of the state are cyclically shifted
over different offsets. While elements in the first row
are not shifted, elements in other row are shified over
different offsets, which depend on the block length.

3. In MixColumn, every column is transformed by
multiplying it by a specific multiplication polynomial
as described in [1].

4. Finally the round key is applied to the state by a
simple bitwise XOR.

Decryption is realized by applying reverse transformation
of each round. Fig. 4 shows Rijndael decryption.

ITC-CSCC 2002



Round Key General Round Rou!nd Key
¥
ShiftRoW ByteSuBTHKey Add HMixColumﬂl ]'-
Repeat Nr-1 rounds

Cyper Text

Plain Text

[
Round Key Last Round
Fig. 4. Rijndael decryption
2.2 Key scheduling

Round keys are derived from the input initial key
state(W(0),W(1),W(2),W(3)) using the following key
scheduling process. Round key for the first round is the
input cipher key itself. The round keys for each of the
remaining rounds are generated from the previous round
key. Key scheduling for encryption is illustrated in Fig. 5.

W(it2) W(i+3)

W(i) , W(i+1) J

6) W(i+4) é» W(i+5) /L

QD‘ | sBox .-—-% ROT
RCON

Fig. 5. Forward key scheduling for encryption

W(i+6) WG+

W(i+4) W(i+5) W(i+6) W(i+7)

Y AN 1
D 6? S S¥
W(‘) ( W(i+1) “

D —1 SBOX
N

RCON

Fig. 6. Reverse key scheduling for decryption

Round key is partitioned into four words in key state: W(i),
W(i+1), W(i+2), W(i+3). W(i) is the first column of key
state in (i)th round, where i= 0,1,2 ... Nr, and Nr is the
number of rounds. W(i+4) is obtained by XORing W(i)
with the result of XORing W(i+3) with the corresponding
RCON constant after being rotated by one byte yielding the
address into S-box, where i = 0,48... (i < NI).
W(i+5),W(i+6),W(i+7) are derived by XORing the
previous word with W (i+1), W (i+2), W (i+3) respectively.
In this manner, (i+1)th round key is generated from (i)th
round. Fig. 6 shows the reverse key scheduling for
decryption. Similarly, (i)th round key is generated from

(i+1)th round key, where i =Nr, Nr-1, Nr-2, ... 0. W(i+1),
W(it+2), W(i+3) are obtained by XORing W(i+4) with
W(it+5), W(it5) with W(i+6), W(i+6) with W(i+6)
respectively. But W(i) is obtained by XORing W(i+4) with
the result of XORing W(i+3) with the corresponding
RCON constant after being rotated by one byte yielding the
address into Sbox

3. FPGA Implementation
3.1. Rijndael encryption and decryption
The cost-effective architecture is illustrated in the Fig. 7.
The corresponding data paths for encryption & decryption
are shown respectively. Control signals and seven
multiplexers control data paths. In this paper, the 128-bit
data bus is chosen for transformation operations, which are
performed by sixteen 8-bit elements of a state.

Data in

ShiftRow / ShiftRaiy
control5 onirolé
ByteSub / ByteSuf

control5 control6

ByteSub / ByteSub!

control 75/

control8 -\___ /

MixCol / MixCol*

control? /" \

a) encryption b) decryption
Fig .7. Data path of the cost-effective design architecture

In the AddRoundKey, a round key is applied to the state by
a simple bitwise XOR. There are 11 key additions during
operation for Nr=10(Nb=4, Nk=4). For encryption, first key
addition involves XORing of input key with the plaintext.
The second through tenth key addition involves XORing of
the round key with the MixColumn output for encryption
and the inverse of the ByteSub output for decryption. The
final key addition involves XORing of the final round key
with the output of the ByteSub for encryption and the
inverse of ByteSub for decryption respectively.

The ShiftRow/ShiftRow-1 and ByteSub/ByteSub-1 opera-
tions can be exchangeable. So we can reuse these 2
encryption blocks in a decryption. This approach reduces
the hardware requirement,

The ShifiRow/ShifiRow-1 operation is implemented using
mux and wiring as shown in Fig 8. Odd number lines need
mux to separate encryption and decryption. In the odd
number lines, dotted lines are for decryption and solid lines
are for encryption. But even number lines don’t need mux
because encryption path and decryption path are equal.

ITC-CSCC 2002



Fig. 8. ShifiRow/ the inverse of ShifiRow

For the ByteSub/ByteSub-1, the Sbox/Sbox-1 is
implemented by 256x8 ROM, of which the input is an 8-bit
address and the output is an 8-bit data. For processing 128-
bit data, we use sixteen asynchronous look-up table ROMs
for encryption and decryption. ByteSub/ByteSub-1
operation is illustrated in Fig.9.

S-box/S-box !
8 ; 8

Data_in | S-box/S-box ~ Data_out 1
8 8

Data_in 2 S-box/S-box ! Data_out 2

8 8
Data_in I5 S-box/S-box ! Data_out 15

Fig. 9. ByteSub/ the inverse of ByteSub

8 8

Data_in 0 Data_out 0

Unlike  ShifiRow and ByteSub  operation, the
MixColumn/MixColumn-1 needs 4-byte input to compute
1-byte output as shown in Fig. 10 and Fig 11. So it needs 4
MixColumn/Mixcolumn-1s to process 128-bit data. Four
inputs a3, a2, al, a0 are multiplied with fixed constants,
which are from the following fixed polynomials (1), (2) :

c(x) ='03'x>+'01'x?>+'01'x+'02"  for encryption. 0

E]

b2 - bl

Fig. 10. MixColumn

c(x) ='0B'x*+0D'x*+09'x+'0E' for decryption. (2)

b3
Fig. 11. The inverse of MixColumn

3.2. On-the-fly key scheduler

The on-the-fly key scheduler is designed to schedule key
values reverse and forward for encryption and decryption.
The forward key scheduling and the reverse key scheduling
are illustrated. Fig. 12 shows the top block of on-the-fly key
scheduler for forward and reverse scheduling.

Key_in0 Key inl Key_in2 Key in3
el 8 T 5 ] — — Decryption
control coul control coutrol
[Registera] [Registerb] [Registerc] [Register d) i_ 1
| Round Round Round _| Round - i od_des
21 Keyo0 Key 1 Key2 Key3 i
aul
e | wddec | cdde | cod_dex | [ROT
& \ 1 7 1 I
A - = — S-box|
D v, D D :
| _ 4 RcoN
128

Fig. 12. On-the-fly key scheduler for forward & reverse
scheduling.

Four 32-bit keys are stored in register a, b, ¢ and d. For
forward scheduling, the word in the register d goes through

- ROT, S-box and XOR with RCON. And it generates the

next four 32-bit words. For reverse scheduling, the last
round key should be generated with forward scheduling at
the first time. With the last round key, we can make reverse
round key. The current keys are in the registers a, b, ¢ and d.
They generate the next under 96-bit key and 32-bit key
from register ¢, d goes through ROT, S-box and XOR with
RCON. With this 32-bit value, current 32-bit key in the
“register a” generate the next upper 32-bit key. It is
illustrated as the dotted line in the Fig.12.

3.3. /O Implementation

Fig. 13 shows Rijndael top block with interface /O block
for 32-bit data bus. It has the function of updating key value.
Initial round key is stored to key buffer and the stored
initial round key is used repeatedly for encryption.

ITC-CSCC 2002



Key in

Rijndael
encryption / Sc}i(egyl
decryption uler 128
T T
128 congol3 controla i/ 128
A
output text
interface key buffer
FZ l——~
Text_out

Fig 13. Rijndael Top Block

For decryption, the last round key is the start key of
operation. First, the last round key value for encryption is
generated. The last round key for encryption is used as the
initial round key for decryption. Similarly itis reused for
the repeated decryption.

4. Performance and Comparison

Table 1 shows the performance evaluation for other
architectures for the encryptor only in terms of processing
and hardware cost. The architecture types (loop unrolling
(LU), full or partial pipelining (PP), and partial pipelining
with sub-pipelining (SP)) are listed along with the number
of stages and sub-pipelining stages; LU-1 implies a loop
unrolling architecture with one round, while SP-1-1 implies
pipelined architecture with one stages and one sub-
pipelining and PP-2 implies partial pipelining with two
stage [2].

Table 1. Performance evaluation for the encryptor

Clock
Architecture Slices | Frequency Lateln y Thro_ttl/ghput
(MH2) (cycles) | (Mbit/s)
LU-1{2]} 3,488 1249 11 290.1
PP-2[2] 5,275 | 24.7 5.5 5753
SP-1-1]2] 3,540 | 40.0 10.5 487.7
*'Our Design 2,580 | 388 11 4315

The core performance of our design architecture of Rijndael
is shown in tablel. It needs fewer slices than another
architecture but has 451.5Mbps throughput. When it uses
input and output interface, the total throughput is depend on
the interface block. And decryption requires more cycles
than encryption because it needs pre-scheduling to generate
the last key value. ‘

i o7 |

Fig. 14. Verification of Rij'ndael crypto-processor
Fig. 14 shows the setup for verification of Rijndael cypto-
processor on the board level test. First, Verilog HDL
simulation of the Rijndael was compared to the test vectors
provided in the AES submission package [1]. The
simulation results are verified. It is targeted to Xilinx
XCV1000E FPGA series, and then the board level test was
completed.

5. Conclusion
In this paper, we implemented a cost-effective Rijndael
crypto-processor for encryption and decryption. We suggest
the on-the-fly key s cheduler, w hich performs forward key
scheduling for encryption and reverse key scheduling for
decryption. It supports the fast generation of key values. As
a result, the memory elimination of software key scheduler
provides a small chip area and a high physical security. We
perform the encryption and decryption of Rijndael on a chip
while scheduling the round keys. This architecture has 16-
byte-oriented operation internally. It supports up to
451.5Mbps for encryption and decryption when it is
targeted to Xilinx’s Vertex XCV1000E.

6. Acknowledgement
This work is supported by IC Design Education Center
(IDEC) in Korea.

References

[1] T.A. Jones, “Writing a good paper,” IEEE Trans. on
General Writing, Vol. 1, no. 2, pp.1-10, May 2002.

[2]1 K. Hwang, Computer Arithmetic, John Wiley, 1997.

[1] Joan Daemen and Vincent Rijmen, “The Rijndael Block
Ciper,” AES Proposal, ver.2, March 1999

[2] Adam J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, “ An
FPGA-Based Performance Evaluation of the AES Block
Ciper Candiate Algorithm Finalists”, IEEE Transactions
on VLSI System, Vol.9, NO. 4, August 2001.

[3] Sanchez-Avila, C., Sanchez-Reillo, R, “The rijndael
block ciper(AES proposal): a comparison with DES”,
Security Technology, 2001 IEEE 35th International
Carnahan Conference on, Oct 2001, pp. 229-234

[4] Maire McLoone, John V McCanny, “Rijndael FPGA
Implementation Utilizing Look-Up Tables”, Signal
Processing Systems, 2001 IEEE Workshop on, 2001 pp.
349-360

ITC-CSCC 2002



