FPGA Implementation of a Cryptographic Accelerator for IPSec authentications

Kwang-Youb Lee' and Jae-Chang Kwak®
! Department of Computer Engineering
? Department of Computer Science
Seokyeong University
16-1,Chongnung Dong,Songbuk Ku,Seoul,136-704,Korea
e-maif : kylee@skuniv.ac.kr, jckwak @skuniv.ac.kr

Abstract: IPSec authentication provides support for data
integrity and authentication of IP packets. Authentication is
based on the use of a message authentication code(MAC).
Hash function algorithm is used to produce MAC , which is
referred to HMAC. In this paper, we propose a
cryptographic accelerator using FPGA implementations.
The accelator consists of a hash function mechanism based
on MDS algorithm, and a public-key generator based on a
Elliptiv Curve algorithm with small scale of circuits. The
accelator provides a message authentification as well as a
digital signature. Implementation results show the proposed
cryptographic accelerator can be applied to IPSec
authentications.

1. Introduction

IPSec provides the capability to secure communications
across a LAN, across private and public wide area
networks(WANs), and across the Internet. When IPSec is
implemented in a firewall or router, it provides strong
security that can be applied to all traffic crossing the
perimeter. Traffic within a company or workgroup does not
incur the overhead of security-related processing.

IPSec provides security services at the IP layer by
enabling a system to select required security protocols. Two
protocols are used to provide security : Authentication
Header(AH), Encapsulating Security Payload(ESF). The
Authentication Header provides support for data integrity
and authentication of IP packets. Authentication is based on
the use of a message authentication code(MAC).

A MAC, also known as a cryptographic checksum, is
generated by a function C of the form MAC=C(M). Hash
function algorithm is used to produce MAC , which is
referred to HMAC. SHA-1, HAS-160 and MDS5 are hash
algorithms, which have been specified for IPSec.

MD5 is a message digest algorithm developed by Ron
Rivest at MIT[1]. It is basically a secure version of the
previous algorithm, MD4 which is a little faster than MDS5.
Until last few years, when both brute-force and
cryptanalytic concerns have arisen, MDS was the most
widely used secure hash algorithm. The algorithm takes a
message of arbitrary length as an input and produces a 128-
bit message digest as an output. The input is processed in
512-bit blocks.

In this paper, we construct a cryptographic accelerator
using Field Programmable Gate Arrays (FPGA)
implementations, The accelator consists of a hash function
mechapism and a public-key generator. The hash function
is based on MDS5 algorithm. The public-key generator is
based on a Elliptiv Curve algorithm with small scale of
circuits. Each implementation result is provided. The

cryptographic accelator provides a message authentification
function as well as a digital signature function.

2. Message Authentication Architectures

An authentication technique involves the use of a secret
key to generate a small fixed-size block of data, known as a
cryptographic checksum or MAC, that is appended to the
message. This technique assumes that two communicating
parties A and B, and shares a common secret key k. When
A has a message to send to B, it calculates the MAC as a
function of the message and the key: MAC=C,(M). The
message plus MAC are transmitted to the intended recipient,
The recipient performs the same calculation on the received
message, using the same secret key, to generate a new
MAC. The received MAC is compared to the calculated
MAC(2].

Figure [illustrates two ways in which a hash code can
be used to provide a message authentication. In Figure 1{a),
the message plus concatenated hash code is encrypted by a
conventiona{ encryption method. The hash code provides a
structure Tequired to achieve an authentication. Because
encryption is applied to the entire message plus hash code,
confidentiality is also provided. In Figure 1(b), only the
hash code is encrypted, using public-key encryption and
using the sender’s private key. This provides authentication
and a digital signature, because only the sender could have
produced the encrypted hash code. In fact, this is the
essence of the digital signature technique.

When confidentiality is not required, architecture (b)
has an advantage aver architecture (a) in the sense that less
computation is required.

3. Design of a Public-Key Generator
Security issues will play an important role in the most of
computer communications in the future. Elliptic curve
cryptosystems allow for shorter operand lengths than other
public-key schemes based on the discrete logarithm in finite
fileds. The implementation of a crypto engine in this paper
is based on elliptic curves.

3.1 EHiptic Curve(EC) Scalar Multiplier

The basic operation in an EC cryptosystem is the scalar
multiplication over the elliptic curve and the most efficient
method for computing EC scalar multiplication is to use an
douyble/addition method[3).

A scalar multiplication is done with a series of
double/addition of elliptic curve points. In turn, each
double/addition of EC points consists of a series of
underlying field additions, squarings, multiplications and

948

YTC-CSCC 2002

HOM)

(a). Message authentication and confidentiality

Source b Destination - >

(b). Message authentication based on public-key encryption
Figure 1. Message Authentication Architectures

inversions. Fig. 2 shows the partitioning of the design into

four levels. The elliptic curve used in this implementation

is defined by Weierstrass equations as:
y’> +xy =X’ +ax’ + b where a,be GF(2™) and b # 0.

[1I/0 Control |

LPoint Multiplication Control]

l Double FSM I l Add FSM l

[muit6F(2m) | | 1nv GF2m) | | Add GF(2m) | | sar GF(2m) |

Figure 2. Design hierarchy

3.2 Proposed Architecture

We propose the structure of a combined operator
architecture for Galois fields in standard basis. The
proposed architecture combine multiplier, squarer, adder

into a inverter, which is based on Almost Inverse Algorithm.

This method offers a compact implementation of EC scalar
multiplier. In Figure 3, multiplication and squaring is
operating on register Z, B, and D , which are used for an
inversion. Register Z contains a 193bit multiplicand. Also,
register B contains a 193bit multiplier. The product of
multiplication remains in the 193bit register D[4].

3.3 FPGA implementation and Results

The scalar multiplier is implemented with a parameterized
VHDL description and is synthesized /mapped to a Xilinx
FPGA(XCV800). By changing parameters for elliptic
curves, a different instance can be acquired. Table 1 shows
the timing comparison of a recent software
Implementation[5] and the implemented FPGA chip. The
speed-up ratios show that overall processing time is
reduced by almose six times, which verifies the efficient
hardware implementation.

A S
Poly| Z E
add
G
a5 e P

I~ Control
signals

rese

End

Figure 3. Structure of Public-Key generator based on EC

Table 1. Timing Comparison of a Recent Software
Implementation and the EC scalar multiplier

Time in it sec
Operation Software EC scalar Speed-up
over GF(2"%") multi.
over GF(2'%)
Addition 0.6 0.1 6
Multiplication 39.0 4.5 8.7
Inversion 126.0 26.0 48
EC Addition 215.0 39.3 5.5
EC Doubling 220.0 39.0 5.6

4. Implementation of a MDS5 Algorithm
The MDS35 algorithm is designed to be quite fast on 32-bit
machines. In addition, the MD35 algorithm does not require
any large substitution tables; the algorithm can be coded
quite compactly. The MDS algorithm is an extension of the
MD4 message-digest algorithm [6]. MDS is slightly slower
than MD4, but is more conservative in design.

4.1 MDS5 Algorithm description
The MD5 algorithm involves repeated uses of a
compression function, f, that takes two inputs(an 128-bit

ITC-CSCC 2002

“input from the previous step, called the chaining varable,
and a 512-bit block) and produces and 128-bit output. The
message is padded to ensure that its length in bits plus 64 is
divisible by 512. That is, its length is congruent to 448
modulo 512. Padding is always performed even if the
length of the message is already congruent to 448 modulo
512. Padding consists of a single Ibit followed by the
necessary number of Obits. A 64bit binary representation of
the original length of the message is concatenated to the
result of above one. The expanded message at this level will
exactly be a multiple of 512bits.

4.2 Design of MDS logics

The MD3 message digest algorithm takes a message of
arbitrary length as an input and produces a 128-bit message
digest as an output. The input is processed in 512-bit blocks.
The MDS5 algorithm has the property that every bit of the
hash code is a functions of every bit in the input. The
complex repetition of the basic functions(F,G,H,I) produces
the results that are well mixed. This design has a Full Loop
Unrolling Architecture. This architecture has a 64-step
combinational logic core. The barrel shifter has been
removed by direct wiring. The use of double buffering
eliminates the loading time from the critical timing path. In
addition to the core, the other main component is the
. padding circuits. Figure 4 shows the block diagram of the
MDS5 design.

For counting the length of the message, the
“LASTBYTE” signal makes the start of counting the
number of bytes. Then, the number of input bytes was
shifted by 3bit-left

For example. if the message is less than 55byte (440bit),
it 1s padded by “100...00” to a length of 512bit except the
length of message. After all padding has been processed,
the output from the 64 steps is put into the register A,B,C,D.

If the message is longer than 56byte(448bit), it is
padded by “100....00” to a length of 512 bit. After padding
and processing from the 64 steps, the “000.....000 56byte
(448bit) is concatenated with the length of message(64bit).
Then, the output from final 64 steps is made.

'inwec
ornga—f cvieg! 26hit |
w ¥
reseflspacial value)
5 s _ta_oudy N ey P
i
msg >
8
coundt | puffer_far foutfer_closd - . rain "
61 . . : .
—“—>]
negEzeos
A — .
¥)
padype
hl_t_ld buf do_td

| et | rgmlcszmn oy
11 4

Figure 4. Block diagram of a MD5

4.3 FPGA implementation and Results

The top-level design was described in VHDL and the FPGA
was utilized. This VHDL code was synthesized and
implemented on the Virtex XCV800 target device with
clock rate up to 100MHz. The utilization of slices was
5,067 out of 9,408 (53 %).

For the full-loop design, the performance is about
500Mbps @ 100MHz. According to the performance
measurements on software implementations given in RFC
1810, the throughput has been less than 100Mbps. DEC
Alpha(190MHz) has given a throughput of 87-100Mbps[7].

5. Conclusions
In this paper, we propose a cryptographic accelerator using
Field Programmable Gate Arrays (FPGA) implementations.
The accelator consists of a hash function mechanism and a
public-key generator. The hash function is based on MD35
algorithm. The public-key generator is based on a Elliptiv
Curve algorithm with small scale of circuits. The
cryptographic accelator provides a message authentification
function as well as a digital signature function.
Implementation result show that the public key generator
can generate a key within 6 msec. And the perfomrance of
hash function mechanism is about 500Mbps @ 100MHz.

With this implementation results, the proposed
cryptographic accelerator can be applied to IPSec
authentications.

® This work was supported by System2010 and IDEC

References

[1]. R. Rivest, The MD5 Message-Digest Algorithm, RFC
1321,MIT LCS & RSA Data Security, Inc.,April 1992.

{2]. W. Stallings, Cryptography and Network Security,
Prentice Hall, 1999.

[3]. J.A.Solinas,” An Improved algorithm for architecture on
a family of elliptic curves”, Journal of Cryptography,
1997.

[4]. J.S.Ha,Y.H.Kim,K.Y .Lee,”Compact implementation of
Elliptic Curve Cryptography System using a FPGA” The
9™ Korean conference on Semiconductors,pp813-
814,Feb.,21-22,2002.

[5}. M.AHasan, A.G. Wassal,”VLSI Algorithms,
Architecture, and Implementation of a Versatile GF(2™)
Processor”, IEEE Trans. Computers, vol 49, no. 10,
pp1064-1073, Oct.,2000. v

[6]. R. Rivest, The MD4 Message-Digest Algorithm, RFC
1320,MIT LCS & RSA Data Security, Inc.,April 1992.

[7]. J. Touch, Report on MD5 Performance, RFC 1810,
June 1995.

ITC-CSCC 2002

