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Abstract: Support Vector Machine (SVM) is one of the
methods of pattern recognition that separate input data
using hyperplane. This method has high capability of
pattern recognition by using the technique, which says
kernel trick, and the Radial basis function (RBF) kernel
is usually used as a kernel function in kernel trick. In
this paper we propose using the g-normal distribution
to the kernel function, instead of conventional RBF, and
compare two types of the kernel function.

1. Introduction

Usually, it is easy to recognize what it is, when we see
the certain pattern. Although we have the exceptional
pattern discernment and recognition capability, it is very
difficult to make the machine, which has such capabil-
ity. Various methods have been proposed, Support Vec-
tor Machine (SVM) is known as one of the methods
of the most excellent pattern recognition. Besides this
method is known as having the high capability of non-
linear discernment by combining Kernel Trick. Kernel
trick is to separate the data in the feature space that
mapped the data to the high-dimensional space by hy-
perplane using kernel function. Radial Basis Function
(RBF) is known as major kernel function. In this paper
we propose using the g-normal distribution to the kernel
function, instead of RBF kernel. Moreover since both
kernel functions are parametric model, we investigate
the influence of parameters.

2. SVM

2.1 The linear separable case

The linear separable case, it is very difficult to choose
the optimal hyperplane that classify the ! training data
X;, (x; € R*,i = 1,---,1) which has linear separable
class label y,, (y; € {%1}) into two classes, because
there are countless hyperplanes in input space.

SVM defines hyperplane with maximal distance
(margin) from hyperplane to the closest data points as
optimal hyperplane. The optimal hyperplane like follow

w-x+b=0, (1)

where w is the normal vector to the hyperplane, and
{bl/||w]} is the perpendicular distance from the hyper-
plane to the origin. In linear separable case, all the data
points can satisfy following inequality constraints

yi(x;-w+56)—1>0. (2)

This constraints represent the optimal hyperplane is be-
tween the two parallel hyperplanes H; : x; - w+b=1,
H; : x;-w+b = —1 and that there are no data points be-
tween them. The closest data points called support vec-
tor, lie on the hyperplane Hj 2. Only the support vec-
tor has determined the optimal hyperplane, other data
points do not contribute to the composition of the op-
timal hyperplane. The perpendicular distance from the
hyperplane Hj oto the origin are Hj : |1 — bj/|jw]|| and
H, : | —1-1b|/||w||.- Hence margin is defined as 2/|{w/].
Therefore we can get the hyperplane with maximum
margin by minimizing ||w}||?, under these constraints.
Thus, we introduce Lagrange multipliers o > 0 for the
inequality constraints, the Lagrangean is

) !
1
L(w,b,a) = §HW||2 =Y apxw b + Y o (3)
=1

i=1

Requiring Vy L(w,b,¢) = 0, Vs L(w, b, ) = 0, and sub-
stitute them into Eq.(3), it is represented as follows
maximize:

1
Ly(a) = Z a; — 3 z Q;05Y Y XX, 4)

.5

Subject to:

0<ai, Y ouyi=0. (5)

To solve this dual problem we get the optimal hyper-
plane.

2.2 The linear non-separable case

In linear non-separable case, it uses combining “soft
margin” and “kernel trick”. Soft margin is to add the
penalty to the error C to the inequality constraint (5).
It is the parameter to be chosen by the user to allow
some errors. Hence maximize Eq.(4) is calculated under
new inequality constraint 3, a;y; =0,0<a < C.
Kernel trick is the method that avoid computing higher
dimensional map ®(x), and compute the dot product
in the higher dimensional space with few computational
task. It shows as following.

K(Xl,X2) = ‘I’(Xl) . @(Xg). (6)
Typical kernel function is RBF. It is the following
—llx — ¥l
K(xy) = exp {—27—— . )
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Therefore, SVM in linear non-separable case as fol-
lows,

maximize:
1
Ld(a) = Z Qi ~— -2— Z aiajy,-yjK(x,-xj), (8)
i ¥
Subject to:

0 <C, D iy =0. 9

3. The g-normal distribution

The g-normal distribution is the set of probability den-
sity functions rely on parameter ¢. The case of ¢ = 1
represents normal distribution, the case of ¢ = 2 rep-
resents Cauchy distribution, the case of ¢ = 1 + ;ﬁ-f
represents t-distribution. Like this it represents some
familiar probability density functions on the value of g.
Moreover it has the feature of smooth about g, it links
several probability density functions smooth. It is the
following,

_ |2 T
Bay) = {1- 7L ag

where g <1+ % (D: The dimension of input data).
Note that Eq. (10) needs to be real, if {---} < 0, then
P,(z,y) = 0. In addition, the normalization constant is
omitted.

4. Experiment method

In this section we conducted two experiments, in order
to investigate the performance of the g-normal distribu-
tion. First we investigate about clustering, next inves-
tigate predict. In addition, the penalty to the error C
is fixed to 100.

4.1 Support Vector Clustering (SVC)

We investigate the performance of the g-normal distri-
bution for clustering. We use the spiral training data
like Fig.1 (number of data is 34) and the rectangle train-
ing data like Fig.5 (number of data is 87), to the SVM,
and compare the result of two types of kernel functions.
The kernel functions are RBF kernel and the g-normal
distribution kernel. The variances of each kernel func-
tion are 0.01,0.2,0.3 and 0.7. Furthermore examine the
result of SVM when changed the parameter of ¢ in the
g-normal distribution. The upper bound of q is set to
2.0, because the dimension of training data is two.

4.2 Predict iris data

We use the iris data set [2]. It can be obtained from the
UCI repository [3). This data set contains 150 instances,
divided into every 50 three classes. Each instance con-
tains four measurements of an iris flower. We select
training data from each class, carry out SVM learning
using these training data. After learning, we predict the
remaining data. The number of training data is 10 and

15. This experiment is conducted on RBF kernel and
the g-normal distribution kernel, compare each result.
The variances of each kernel function are 0.25, 0.2 and
0.15. The upper bound of q is set to 1.5, because the
dimension of training data is four.

5. The result
5.1 SVC

We show the results of RBF, the g-normal distribution
(¢ = 1.5) and, the g-normal distribution (¢ = 1.5) in
Fig.2 ~ Fig8, the number of support vector in Table 1
and Table 2. Support vector is indicated as white circle.

o =0.7

¢ =0.3

Figure 2. The result of clustering by RBF kernel about
input data 1

Table 1. The number of Support Vector about each vari-
ances for input data 1

o=001]02]03}07
RBF 34 18 | 21 | 29

The g-normal distribution
(@ = 1.5) 3 29 [ 21 | 29

The q-normal distribution
(g = 2.0 34 24 1 22 | 24
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Figure 3. The result of clustering by the g-normal dis- .
tribution (q = 1.5) about input data 1 Figure 6. The result of clustering by RBF kernel about
input data 2
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Figure 4. The result of clustering by the g-normal dis-
tribution (q = 2.0) about input data 1 0=03
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Table 2. The number of Support Vector about each vari- oSS b4
‘ ances for input data 1 N .
| 0=001]02]03]07 ¥ 3
RBF 87 3212 | 64 2 S o
The g-normal distribution _I 4O FORFC O Qi+ vy
(q = 1.5) 87 35 ] 31 ) 64 o=03 a=0.7
The g-normal distribution Figure 8. The result of clustering by the g-normal dis-
(q = 2.0) 87 47 | 33 | 41 tribution (q = 2.0) about input data 2
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First we consider about the ¢ to investigate the influ-
ence of the parameter common to both of kernels. All
results show good clustering power that a o becomes
small, but the generalization power is down. See the ta-
ble 1, the number of support vector is almost the same
as the number of input data for the both kernel func-
tions except for ¢ = 0.2,0.3. If many support vectors
are used, generalization power has down and calculat-
ing takes long time, accordingly we consider o = 0.3
is best for the q-normal distribution kernel, ¢ = 0.2 is
best for the RBF kernel. Next we compare the two type
of kernels in the case of best o, the g-normal distribu-
tion kernel clustering better than RBF kernel. As the
parameter of q is larger, the result is clustering more
clearly.

5.2 Iris data

The result of Accuracy of predict shows in Table 3,
Table 4. Best accuracy shows in the bold letter.

Table 3. Accuracy about each variances of 10 training

dat
c=03]10=025] 0=02 c=0.15
RBF | 95.833% | 92.833% | 98.333% | 96.667%
q=1.5 | 95.833% 96.667% | 98.333% | 98.333%
q=1.2 | 96.667% 095.833% | 98.333% 97.5%
q=0.8 | 95.833% 06.667% | 98.333% | 96.667%

Table 4. Accuracy about each variances of 15 training

dat
=03 o =025 c=02 | o=0.15
RBF | 96.191% | 96.191% | 96.191% | 95.238%
q=1.5 [ 97.143% | 97.143% 97.143% | 96.191%
g=12196.191% | 96.191% 96.191% | 95.238%
q=0.8 | 96.191% | 96.191% 96.191% | 95.238%

See Table 3, the g-normal distribution kernel discrim-
inates and RBF kernel shows same best accuracy in
o = 0.2. But the g-normal distribution kernel (g = 1.5)
shows best accuracy in ¢ = 0.15 too, it is the area of
high accuracy wider than RBF kernel. That is, the g-
normal distribution kernel is considered to be flexible
about variances. See Table 4, both kernel shows the
same accuracy in ¢ = 0.8,1,2, in ¢ = 1.5 show the re-
sult better than the RBF kernel. Both results shows
that as the parameter of ¢ is larger, the area of best
accuracy wider.

6. Conclusion

In this paper, we propose SVM with the kernel of the
g-normal distribution, and we experiment about clus-
tering and predict. The case of clustering, the q-normal
distribution kernel showed the good result rather than
the conventional RBF kernel. The case of prediction, al-
though it was the same accuracy, shown that flexibility
is high. Moreover, about Parameter g, larger one shows

the result better. This suggests that the g-normal distri-
bution kernel is good for SVM. Note that the g-normal
distribution can be considered as one of possible exten-
sion of non-homogeneous polynomial kernels. In future,
we’ll compare another kernel function and more study
about the behavior of changing the parameter of ¢.
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