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Abstract: We

transform or two band subband filtering with finite

show how any discrete wavelet
filters can be decomposed onto a finite sequence of
simple filtering steps, which we call lifting steps but
that are also known as ladder structures. We present a
self-contained derivations, building the decomposition
from the basic principles such as the Euclidean
algorithm, with a focus on a applying it to wavelet
filtering. This factorization provides an alternative for
the lattice factorization, with the advantage that it can
also be used in the bi-orthogonal, i.e, non-unitary case.
Lifting leads to a speed-up when compared to the
We show that this

scheme can be applied in image compression efficiently

standard implementation. lifting

1. Introduction

In mathematical analysis, wavelets were defined as
translates and dilates of one fixed function and were
both represent

functions[1}[{2]. In the mid eighties the introduction of

used to analyze and general

multi-resolution analysis and the fast wavelet transform
by Mallat and Meyer provided the connection between

subband filters and wavelets[3]. This led to new
constructions, such as the smooth orthogonal, and
compactly  supported  wavelets[1].  Later  many

generalizations to the bi-orthogonal or semi-orthogonal
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case were introduced. Bi-orthogonality allows the

construction of symmetric wavelets and thus linear
phase filters. Examples are following: the construction
fully

and

of  semi-orthogonal spline wavelets[4],

bi-orthogonal compactly supported wavelets[2],
recursive filter banks[5]. Several techniques to construct
wavelet bases, or to factor existing wavelet filters into
basic building blocks are known. Lifting was originally
developed to adjust wavelet transform to complex
geometries and irregular sampling leading to so-called
second generation wavelets. It can also be seen as an
alternate implementation of classical, first generation
wavelet transforms. The main feature of lifting is that
it provides an entirely spatial-domain interpretation of
the more traditional

the transform, as opposed to

frequency-domain based constructions.
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Figure 1| : Typical Lifting Steps : Split, Predict
and Update
The local spatial interpretation enables us to adapt the

transform not only to the underlying geometry but also
to the data, thereby introducing non-linearities while
of the
typical lifting is comprised of the steps: Split, Predict,

control transforms multi-scale properties. A
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and Update(as shown in Figurel):
Split: Let x[ %] be a signal. We first split x[n] into
its even odd
x [ n)=x[2#%] x [n]l=x2n+1]. If the

x[n] corresponds to the samples of an underlying

and poly-phase  components

and

smooth, slowly varying functions, then the even and
odd poly-phase components are highly correlated. This
correlation structure is typically local, and thus we
should be able to odd
poly-phase coefficients from the nearly even poly-phase

accurately predict each

coefficients.

Predict: In the interpolating formulation of lifting, we

predict the odd poly-phase coefficients x ,[#] from
the neighboring even coefficients x [ #]. The predictor
for each x [#] is a linear combination of neighboring

even coefficients:
P(x lnl=2p i [n+ 1) Q)

We obtain a new representation of the x[n] by
replacing  x [#] with the prediction residual. This

leads to the first lifting step:
dln]=x [ n)—P(x )l n] 2

If the underlying signal is locally smooth, the
prediction residual [ #] will small. Furthermore, the
new representation contains the same information as the
original signal x[#)] : given the even poly-phase

x.[ %] and the prediction residual af n], we can

recover the odd poly-phase coefficients x,[#] by

noting that

x o[ n]=dl n] + P(x ) n]. 3)

This prediction procedure is equivalent to applying a

high-pass filter to [ %].

Update:  The third lifting step transforms the even
poly-phase coefficients x [#] into a low-pass filtered
and sub-sampled version of x[#]. We obtain this

coarse approximation by updating x [#] with a linear

combination of the prediction residuals df#n]. We
replace x [ %] with
dnl=x[n]l+ Udln] 4)

where [(d) is a linear combination of neighboring d

values :

U(a')[n]=2uld[n+l] (5)

Each lifting steps is always invertible ; no information
is lost. Assuming the same P and U are chosen for
analysis and synthesis stage, the lifting construction
guarantees perfect reconstruction for any P and U.

Given d[»] and [ #n], we have

x L n] = n]— U~ (6)
and x,[n) from (3).

The inverse lifting stage is shown in Figure 2. Note
that ¢ and 4 are at half rate, and this transform
correspond to a critically sampled perfect reconstruction

filter bank. One can show that the update function

determines the properties of the dual wavelet and
primal scaling function.
17k, xo[n]
cln]l —>—(+ -

A

RIin}
-U P merge —»
o) e
1/ko xo[n]

dln) —p—L (e

Figure 2 : Typical inverse lifting steps : undo
the update, undo the predict, and merge
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2. 2-dimensional Wavelet Transform
via Lifting

The 2-channel subband for wavelet transform is

shown Figure 3.

Figure 3 : 2-channel subband coding model

The poly-phase representation for filter is following;
hn(z)zhn,e(zz)%—Z*lh n,o(zz) N

where %, ., is even coefficients and /%, , is odd

coefticients.
h n,e(z) = ;h n, 262 k and £ n,o(z) = ;h n,2k+ 1< —k

ho(2)+ b, (—2)
2

Also, h, (z 3y =

_ h(2)—h,(=2)
N 227!

and £, (2 )

The polyphase matrix is represented as following.

B2 g2
P(2)=| | ™° e 8

2) Buo2) &ao(2) ®)
The polyphase matrix of synthesis stage is obtained by
F(z) is defined and if we
apply Noble Identity on these filter banks, we can
represent 2-channel subband such as Figure 4.

using similar method.
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Figure 4 : The polyphase representation for wavelet

transform

Lifting theory is the following: The polyphase matrix
of wavelet transform in polyphase representation is to
be factorized using Euclidean algorithm and to be
performed with predict and update stages[6]{7]. The
Figure 5 is shown the block diagram of predict and
update on lifting stage
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Figure 5 : The block diagram of predict and update on
lifting stage

Daubechies 4-tap filter coefficients in Ref[l] is to be
factorized into the predict and update stage by using
Euclidean algorithm. This factorized polyphase matrix is
the following;

V3+1
ro-| B 0 LA
0 V3—1
)
V3, V3-2
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The block diagram of analysis 4-tap for wavelet

transform via lifting is shown in Figure 6.
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Figure 6 : Orthogonal analysis 4-tap filter for lifting

predict

3. Numerical Simulation and Results

These experimental results of perfect reconstruction of
Lenna and Cronkite images on Figure 6 are shown on
Figure 7 and 8.

Figure 7 : The perfect

Figure 8: The perfect

reconstruction of reconstruction of

Lenna image via 4-tap Cronkite image via

via lifting scheme 4-tap lifting scheme

The perfect reconstruction PSNR of Lenna image via
lifting is 325 dB and PSNR of Cronkite image is 326
dB. Lifting leads to a speed-up when compare to the
standard implementation. Also, lifting allows for an
in-place implementation of the fast wavelet transform.
This means the wavelet transform can be calculated

without allocating auxiliary memory.

4. Conclusion

After first optimizing the sub-sampled an up-sampled
FIR filters, through the use of some algebra we arrived
at a scheme to build a wavelet transform using primal

and dual lifting blocks. This decomposition corresponds
to a factorization of the poly-phase matrix of the
wavelet or sub-band filters into elementary matrices.
That such a factorization is possible is well-known to
algebraists, it is also used in linear systems theory in
the electrical engineering community. We present a
self-contained derivations, building the decomposition
from the basic principles such as the Euclidean
algorithm, with a focus on a applying it to wavelet
filtering. This factorization provides an alternative for
the lattice factorization, with the advantage that it can
also be used in the bi-orthogonal, i.e, non-unitary case.
Lifting leads to a speed-up when compared to the

standard implementation. We show that this lifting

scheme can be applied in image compression
efficiently.
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