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Abstract:  In this paper, numerical robust stability analysis
method and its design are presented. L, robust stability of the
fuzzy system is analyzed by casting the systems into the
diagonal norm bounded linear differential inclusions (DNLDI)
formulation. Based on the linear matix inequality (LMI)
optimization programming, a numerical method for finding the
maximum stable ranges of the fuzzy feedback linarization
control gains is proposed.

1. Introduction

Up to now, Fuzzy feedback linearization has attracted the
attention since the nonlinearity can be efficiently modeled and
canceled by fuzzy logic system.

Fuzzy feedback linearization is a feedback linearization
method which uses a fuzzy model as a nonlinear system
model. Since the idea of the fuzzy feedbcak lineariation control
based on Takagi-Sugeno (TS) models [1] was presented in [2],
various kinds of robust [6-8] and adaptive techniques [3-5]
have been applied to the fuzzy feedback linearization control.
While the adaptive fuzzy feedback linearization guarantees
Lyapunov stability in the presence of uncertainty, it has some
practical limitations due to its complex structures. From a
practical point of view, robust approach is more suitable for
the fuzzy feedback linearization to overcome the uncertainty.
The stability analysis was made in the frequency domain in [6]
and the robust stability condition and design method using
multivariable circle criterion have been presented in [7].
However, they based on graphical stability analysis, there exist
some difficulties in being applied to the control problems
directly. In order to obtain the numerical solutions for the
fuzzy feedback linearization control systems, Linear Matrix
Inequality (LMI) based robust stability condition which can be
solved numerically for the fuzzy feedback linearization
regulator has been presented in [8]. in which, however, the
only stability analysis was done.

In this paper, we study a controller design as well as
numerical stability analysis for the robust fuzzy feedback
linearization control systems using TS fuzzy model. For the
structured uncertainty, the L, robust stability of the closed
system are analyzed by applying the LMI based convex
optimization method. The stability problems are cast into
diagonal norm bounded linear differential inclusions (DNLDI)
and a generalized eigenvalue problem (GEVP) [9]. We present
a systematic numerical method for finding the maximum stable
ranges of the fuzzy feedback linearization control gains.

2. Problem formulation

The fuzzy model represents a nonlinear system with the
following form of fuzzy rules.
i-th plant rule:

IF x is My and x is My and - and x"""V is M,

THEN x'""=( a;+ da;(tN)7 - x+(b:+ 46 (1) u+d =127 (1)

where x=[rx, - 2" V17 is the state vector which is assumed

to be available and a;, 4a:(fdeR'”", b, d(ner and deR

denotes unknown external disturbance which belongs to L,
space such that 5, T A oo 2
Also, M; is the fuzzy set and » is the number of fuzzy rules
and Also, 4a;(¢) and 4b{+) denote the norm-bounded

time-varying modeling uncertainties for system and input
matrices, respectively. The TS fuzzy model can be inferred as

D wl X art 4a, ()7 x+ (b4 b(1))u)
w_ =1 +d
wax x)

=

x

= BA O art dai (D)7 x4 (b + Bb (D)) +d (3)

w{ x)
3w x)

For the robust stability, consider the following control law,

where w(z)= }':I‘Mi,(x‘f‘”), B x)=

T
(a+ T as— a ) x

TP
where, a, e R* is the appended input vector in order to
reduce the disturbance, which comes from the uncertainties.

By substituting (4) into (3), the closed loop system can be
written as (5).

@

u=

P = ad‘r- x + aN(t)T- x + d (5)
where, ay(d = ag+ glh,-(x) da;(t)
B x)db(t)
+ '2‘ { ‘i_:‘h;( x) Cag+ ap— a;)} 6

Z.‘hi( E 21T
In the following, the robust stability analysis and the design of
ae for (6) is presented.

3. L; robust stability analysis of fuzzy feedback
linearization control systems

In order to give the numerical L, stability condition, the
closed system (6) is cast into Diagonal Norm-bound Linear
Differential Inclusions (DNLDI). DNLDI is a linear system with
scalar, uncertain and time-varying feedback gains, each of
which is bounded by one. The DNLDI formulation of the
closed system (6) is given by

x= Ax 4+ Bp + w,
p = A(#)Cx, z = Dx (7)
where
0o ! 90 0 600 - ¢
0 0 1 0 000 - 0
A= 10 0 0 1ler™, B=[000 0/ cr""
an o 8u < G 111 -1
aq 00 0 si(4) 0 0 - 0
Deca 0 0 0 & 0 - 0
C=i00 ¢y ol e R, 4A(t) = 0 V] 63?1) e 0
200 oy 00 0 8N
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ay (¢) .
&1 —N’;T—— if ¢; = 0 (8)
0 if ;=0
constraint © | day() | < ¢; (i = 1,2, -, n) (9)
or equivalently, 57s < x7C"Cx (10)
0
0
D: [/«R"", paR', 2ze R ,w= |0 | ek (11)
d
Remark . In (8), ¢ (j=1,2 ,x2) can be any

non-negative real scalar satisfying'the constraint (9) or C can
be any diagonal positive semidefinite matrix satisfying the
constraint (10). Note that ¢; can be set to ¢, only if there is
no uncertainy in the corresponding a;, ie. dey(t) = 0. In
Appendix A, the selecing method of ¢; (i = 1, 2, -+, n) for
the stability analysis is proposed.

In (11), w is the unknown external disturbance input which
belongs to L, space such that

e e a¢w (12)

and z is the output which is the same as the state x.

Theorem 1. The system (7) is 1, stable and its 7z, gain is less
than y if there exist P> ¢ and >0 such that

AP+ PA+D™D+:CTC PB P

B'P - 0 |<90 (13)
P 0 —-4r
Proof: Now, suppose there exist a quadratic  function

Vix) = x7Px, P> 0, and y > 0 such that for all ¢,
thvu) + 27z - FwTw

= " (ATP+PA+D™D) x + 2 x"PBp +2Pw — FYu'w <0 (14)
for all » and p satisfying 5% < x"CTcCx

Using the S-procedure of LMI techniques {9], (14) is equivalent
to the existence of P and r satisfying

AP+ PA+D™D+:C"C PB P

BTP ~t 0

P 0 71

To show the L, gain (10) is less than ;, we integrate (14)

from 0 to 7, with the initial condition () = o0, to get

<0

Vis(t) + [ (272~ ywtw) <o
Since V(x(T)) = 0, this implies
llz ”z
Hawll,
Therefore, from the Theorem 1, we can obtain the upper
bound on the L, gain by solving the following EigenValue
Problem (EVP).

<7

minimize y
P>0,720,
AP+ PA+D'D+:CTC PB P
B’P - 0 |<o0
P 0 I

Based on the Theorem 1, the analysis procedure can be
summarized as follows.

STEP 1. Cast the closed system (6) into DNLDI (7).

STEP 2. Select ¢; (i = 1,2, -+, ») as in Appendix A.

yTEP 3. Check the stability condition of Theorem 1. This can
e easily done by solving the feasibility problem.

JTEP 4. If there exists a feasible EVP solution 4,50, then the
losed system is robust stable in L, sense and L, gain is less
han ¥ min

Theretore, from the Theorem 1, we can obtain the upper
bound on the L, gain by solving the following EigenValue

Problem (I VP).

minimize
AP+ PA+D'D+cC’C PB P
P>0.: 0, B"P -~z 0 |<0 (15
P 0 -9

4. L2 robust stable design of fuzzy feedback
linearization control systems

Our problem is that of determining the Z, robust stability

range ol o, (j=1,2,#) which can maintain the L, gain of
the closed system (5) within the specified upper bound 7, .
From the constraint, ¢; (9) can be regarded as the upper
bound on | ay(N 1 (i= 1 2, =, n)

Therefore, in order to determine a robust stable range on ag
, we need to find the largest possible ¢, for which Theorem 1
holds with y = ;... should be obtained. This can be obtained

by solving the following optimization problem (17).

maximize ¢, ¢, , -, ¢, subject to
ATP+ PA+D"™D+CTC PB P
P>0,c20, B'P ~tI <0 (17)
P 0 —ad

However, it is difficult to solve the multiple parameter
optimization problem (17) straightforward. Instead, by splitting
(17) into the single parameter optimization problems (18) for
each i, it is possible to derive the feasible solution of (17)
from the solutions of (18).
maximize ¢; subject to

P>0,. 1,20, (18)
ATP;+ P,A+ DD+, CTC; P;B P;
BTP; B | 0 <0
P; 0 —7’2max1
where Ci = diag( 0, , 0, ¢,0,,0)

—i-1- ~ n—i—
If we define i; = ¢, the optimization problem (18) can be
viewed as the Generalized Eigen-Value Problem (GEVP) (19).

maximize 4, subject to

;=20
P05 (19)
ATP;+ P,A+ D"D+ A, ETE: P.B P;
BTP; — I 0 <0
P; 0 - P I
where E; = —£

c; i
Thus, the above GEVP can be easily solved by well-established
LMI optimization techniques [9].
Denote the solutions of GEVP (19) as 7; (i = 1,2, -, n).

Then, the solutions of the optimization problem (18) can be

writttn as ¢ = V2, (i= 1,2, . n). Now, it should be
noted that ¢, &, , -~ . ¢, can not be a feasible solution of the
optimization problem (17).
o _0 0 - 0
_ 0 o 0 -0 . .
For €=1000¢ 0 = 21 C: (20)
000 - e
where € = diag ( 0., 0. ¢, 0, ~,0) 4 can not be

—i-l- — i

guaranteed (14) holds. Thus, some modifications are needed to
obtain a feasible solution. The modified C* can be written as

T o0 Vaa 0 0 0
- oy 0 Vee 0 - 0
C* =10 0 ¢ - 0 = .J——iL:- 0 0 \[?«c;x 0
0 0 0 - L T R TR i
Z}l (VT TH

- 7____‘2 — 21
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where 7, denotes ¢ corresponding to A or ¢
(i= 1,2~ ,2n).

In Theorem 2, it is shown that Theorem 1 holds for ¢* in
(21).

Theorem 2: For ¢* in (21), there exists P> 0 and 20
which satisfy LMI ([, stability condition (22). -

A"P+PA+D'™D+: C~'C PB P
B'P —I 0 |s0 22)
P 0 —Yhl

Proof: Since ¢ (i= 1,2, -, ) is the solution of the

optimization problem (18), the following holds for all

AP+ P,A+D'D+7; C;' C: PR y
BTP; ~d <6
P; 0 2.

(23)

where P; denotes P; corresponding to A or ¢

(i= 12 ~,n)
Hence, from the property of the negative semi-definite matrix
(24) also holds.

ATP.+ P,A+D'D+T, C;' C; PiB 2
) B"P. -0 <0 (29
P; 0l
By rearranging the summations, (24) | becomes
'(2.—& )+(2——)A D'D+21— T (Q—i w (L
'(g— ) ~(:2_‘,—7;’ %3 [ <0 (25)
S ° - Ve 1

Using the property of T;, it can be easlly shown that

f_;:)n TTT = (B g, (g T‘ T (26)

holds.
Employing (25), (26) can be written as

AT e )+(2}~—' )Mofm(}:rr )(}}‘,@E) (g{—" )B (}_'J\? )

SR 2 ~«ELyr 0 =0
R ° = o
@7)
Let us choose
F; T
p= 5% and = B3 @8)
Using (21), (28) and (27) can be expressed as
ATP+PA+D™D+r C* C~ PB P
BTP 3 | 0 <0 (29)
P 0 Vel
Therefore, for C* in (21), there exists P> 0 and r20
which  satisfies = LMI L, stability condition  (22).
Since Theorem 2 holds for ¢ in (27), ¢, ¢f . - . cf can

solution of the optimization problem (17).
Therefore ¢ (j = ,n) can be used as the largest
possible ¢; (i = 1, 2, , n ) for which Theorem 1 holds.

Thus, using the admissible bounds of | ay(#) | with respect
to 2z , the robust stable range of ag can be expressed by the
following set representation (30).

ap | lag 1+ | dog(r) )
{{aw | :

be a fea51b1e

| ab{t) |
_—rﬁr—_— . | ag tag — ;1) < ¢f
lbl
j=1, 2z (30)

The control design procedure is summarized as follows.

STEP 1. Cast the closed loop system (5) into DNLDI (7).
STEP 2. Solve the GEVP (19).
STEP 3. Find the stable range (30) of a4 from C” in {21)

STEP 4. Select proper a4 in the set (30)

5. Numerical examples

Consider the problem of balancing and swing-up of an
inverted pendulum on a cart. The dynamic equations can be
approximated by the following two fuzzy rules [8] and the
membership functions used in this fuzzy model are shown in

[8].

Rule ) © IF x is about 0

THEN x=( a)+ da,(t))' - x+(b)+db () u+d

Rule 2 : IF x is about =% (1x1<F)

THEN x=( ap+ day (1)) - x+(by+ dby(t))u+d (31

(31) can be inferred as
S0l art a7 x4 (bt 404 u)

lﬁlw,( x) e

= S gt da, (D)7 x4 (bt 2D ) +d 32)
where w{z)= ]z[M,-,-(x"“”), hi z)=———w#(i)——— and,
= 2wl x)

=l ' _ _ 2 i _
m-—[4//3 py O]—[J7.29 03, "2~{7r(4l/3—am[32) o]—[g_as 0l,

DS S -
b= g = 0115, b=t =005
we assume that de,(+) , 4da,(t) , 4b(t) , 4b(t) are

unknown but bounded as follows.

-1 <da, (1) <1, 0.5 <dap(t) <05, -1 <day(t) <1,
-0.5 <day(t) <05, -0.001 <ap,(t) < 0.001,

-0.001 <a5,(1) <0.001

we use the feedback linearizartion control law as (33).

T
ap’+ fj‘lh‘(’)( 8, — 8 )z

w = (33)
b,
and then, the closed Ioop system by substituting (33) into (39)
YIeldS x = a,,T- x + aN(t) -x + d
where, ay(d = ap - z+ glh,-(x) da;(t) - %

S h ) abi(1)
I

RS

Consider the design problem for ay , j=1.2, for the
feedback linearization control system (34) with o, = [-1 -1].
Following the STEPs in Section 4, as can be obtained. In the
design procedure, y=y..=0.01 was specified.

Figure 1 shows the region of an and ap, where we choose
the parameters as ay = -25 and agp = -8.

In the computer simulation, as a disturbance «# which
belongs to L, space, the signal shown in Fig. 2 is used. Figs
3 and 4 illustrate the simulation results in which the initial
condition is zero. In Figs. 5 and 6, the energy of the
disturbance and the output are plotted with respect to time
respectively.

{ glhi( ) (ay+ ar— ;) - x} (34)

L, norm of the input and output can be computed as

Hwily= [ w'wdr= [ dn? ar = 10 (35)
Wale=f 2"zdi= [" x"x ar = 0.0858 (36

Thus L, gain is
s Nzlly o g gogsg (37

“w“ﬁ"o HW|12

The simulation results illustrate that the closed system (34) i
robust stable in £, sense and L, gain is less than 0.01 whicl
is specified in the design procedure, STEP2.

Also, in order to analyze the Lyapunov stability, th
simulation results for the unforced system, i.e. &A=0 and th
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initial condition x, = [1 0] are presented in Fig. 7 and 8.

Fig. 2 4(»

Fig. 6 output energy

oy

7 SRR 7 N NN NS U N |

L = 4

Fig. 7 state x, Fig. 8 state «,

5. Conclusion

In this work, we have presented the LMI-based L, robust
stability analysis and design method for the fuzzy feedback
linearization control systems. The plant was represented by
well-known TS fuzzy model and the analysis and design
problems was numerically solved by casting the closed loop
system into DNLDI and GEVP form. In the examples, the
‘uzzy feedback linearization controller was developed efficiently
ind the validity of the proposed analysis and design scheme
~as shown.
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Appendix A

Although ¢, (;j= 1,2, «,
scalar satisfying the constraint (9), ¢; (j =1, 2, -
be chosen as the minimum upper bound for
avoid the conservative analysis.

In order to obtain the minimum upper bound for | ay(s) |,
(6) is written in the component form as in (A.1)

() = ag + DA +

> B4
e ———— 3 (s (agtan ~ a;)
IE O

n) can be any positive real
, n ) should
lag() ] to

(A1)

(i=1,2+,n )
Then, the following inequality (A.2) holds for all ; in which we
used basic assumption,

Tacxmy=1  and T jx(i)=1

a1 < Lag) + | D rdxt)dafn |
2 hA )28
+ ’ =

2. h{x(¢)) Cay +ap - az) |
IIC OV
(A2)
The second and third terms in the right side of (A.2) satisfy
(A3) and (A4).

| S hlsdag(d | < ™| day(s) | (A3)
| T ()b L1 s .
e h{x(t)) (ag+ag — a;
T alse e (Ad)
M| gbL1) |
S—Ln—fn—]T]._ m?xlaw"'aﬁ,"asi')
Then, the following inequality holds for all ;.
Pad{Dl <V agl + %) dog(r) | +
max
T abLty ]
7 N max — .
m}n (o1 i lay +ag az 1)
Therefore, we choose
o =lagl + "X day) | +
RN YO
L TR max .
lm}n | b;i i | ay +ag (1;,’ )
;=12 - .,n (A5)

for less conservative stability analysis.
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