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Abstract: In this paper, we consider how to treat
delay-time uncertainties caused by inter-die and intra-
die variabilities in evaluating the distribution of the crit-
ical delay of a CMOS combinatorial circuit, and formu-
late inter-die variability as a correlation of delays. Then,
we propose an algorithm to evaluate the distribution of
the critical delay based on the algorithm in [1] which
takes correlations into account. We also show some ex-
perimental results to see the effect of the formulation.

1. Introduction

Since variability of design parameters increases in
deep sub-micron era, the statistical static timing analy-
sis1], [2], [3], [4], [5], which analyzes the distribution of
the maximum delay (critical delay) of a given combina-
torial circuit, becomes important to design high speed
and low power VLSIs. Because, designers often set ex-
cessive margins derived from the worst-case analysis in
order to avoid the effect of delay time uncertainty, and
such excessive margins bring over-design of circuits. If
designers can estimate the distribution of critical path
delay exactly, over-design of circuits may be eliminated
so that high density and high performance VLSIs can
be produced with high yield[6], [7], [8].

Several researches have been done on this topic[1}, [2],
[3], [4], [5], but all of them treat mainly random-within-
die variability, and did not treat inter-die variability ex-
plicitly. Since inter-die variability can be considered to
affect each element (transistor and interconnect) in a die
equally[9], [10], we may be able to treat its effect as a
constant. But, if we do so, we misunderstand the ex-
pected value of the critical delay, and cannot obtain the
precise distribution of the critical delay of the circuit.
Moreover, if the effect to the elements in a die is not
equal, we may misidentify the critical path. Therefore,
we must consider how to treat the effect of the inter-die
variability, in order to make the statistical static timing
analysis more effective.

The methods proposed so far for the statistical static
timing analysis can be divided into three types. The
first type uses Monte Carlo simulation[2], {3]. This type
is flexible, but time consuming, especially if we intro-
duce correlations of delays. Because, a large number of
random values with correlations are to be generated for
simulation. The second type selects candidates of the
critical paths and evaluates the distributions of those
pathsj4]. This type is efficient if the number of can-
didate paths is small. However, the number of paths
may explode exponentially with respect to the number
of gates, and the number of paths with a similar long

delay tends to increase in the practical circuit. There-
fore, if the number of candidate-paths is large, this type
becomes inefficient, and if only a limited number of can-
didate paths are considered, the results may be inaccu-
rate. The third type uses a systematic method to cal-
culate the maximum delay to the output of each logic
gate[1], [5]. This type is most efficient among these three
types, but all of the algorithms of this type other than
(1] assume that the distributions of all signal delays are
independent each other, which does not hold in com-
binatorial circuits with re-convergent paths. Therefore,
we proposed an algorithm which can treat correlations
between delays in [1]. We use this algorithm to treat
inter-die variability.

In this paper, we consider how to treat delay-time un-
certainties caused by inter-die and intra-die variabilities
in the statistical static timing analysis for a CMOS com-
binatorial circuit, and formulate inter-die variability as
a correlation of delays. Then, we propose an algorithm
based on the algorithm in [1] which takes correlations
into account. We also show some experimental results
to see the effect of the formulation.

2. Preliminaries

The factors causing delay-time uncertainty can be

~divided into two types; intrinsic physical factors and

dynamic environmental factors[9)], [10]. The former is
caused by fabrication process and mask imperfections,
whose effects increase in nano-technologies. The lat-
ter contains temporal factor and is divided into two
sub-types. For example, IR drop, cross-tatk noise, and
the effect of temperature change are short-term factors.
On the other hand, hot-carrier degradation and electro-
migration are examples of long-term factors. As for the
dynamic environmental factors, we should consider the
worst-case, in order to guarantee the behavior and the
lifetime of a circuit. Therefore, the intrinsic physical
factors are targets in this paper.

There are several factors classified in intrinsic physi-
cal factors, which bring delay-time uncertainty. For ex-
ample, as for the transistor, there are threshold volt-
age Vip, effective channel length L.;y, drain-source re-
sistance R4,, and gate oxide thickness t,,, and as for
the interconnect, there are width w, separation s, thick-
ness t, via resistance R,;,, interlayer dielectric thickness
ILD,, and dielectric constant €. Due to the variabil-
ity of these parameters, saturated current I;5,: between
source and drain, load capacitance, interconnect capac-
itance and resistance and so on vary, so do the delay.

Such variability of the intrinsic physical factors can
be divided into two sub-types; inter-die and intra-die
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variabilities[10]. The effect of the former is equal within
die, and that of the latter varies within die. The intra-
die variability is composed of systematic factor and ran-
dom factor, and the systematic intra-die variability de-
pends on spatial factor and proximity factor[11]. Some
proximity-dependent factors can be decreased by optical
proximity corrections, phase shift mask, and etc.

Based on the clagsifications stated above, we denote
the delay 7 of each element (gate or interconnect) by
7 = p+A+v+34, where p is the nominal delay, A is the
inter-die variation, » is the spatial intra-die variation,
and 4 is the random intra-die variation. In this notation,
we assume that g and v are constant, and A and ¢
are stochastic variables denoted by normal distribution
N(0,0?) with the mean equal to 0. The image of the
distribution of delay 7 is shown in Fig.1.
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Figure 1. Delay model

The amount of spatial intra-die variation is given as
v, whose value depends on the position of the element
in a die. The proximity-dependent systematic variation
Fs assumed to be represented by a correlation coeflicient
hetween 4, and d, of delays of elements 1 and 2, that is,
if the delays of elements 1 and 2 vary dependently on the
distance between the elements, then we represent such
an effect by a correlation coefficient between §; and J,.
In order to show inter-die variations, we introduce a
strong correlation, such as correlation coeflicient almost
rqual to 1, between A; and A of elements 1 and 2 such
that the devise structures of the elements are the same in
h die. For example, if elements 1 and 2 are interconnects
pn metal 1 layer, then the inter-die variability factors
rause similar effects on the delays of these interconnects,
and hence we assign a correlation coeflicient between A,
and AQ .

3. Algorithm

In order to find the distribution of the maximum de-
ay of a CMOS combinatorial circuit, we represent the
ircuit by an acyclic graph G = (V, E), as shown in
ig.2. In G, each terminal v of a circuit is represented
y a pair of vertices v0 and vl, which are denoted in
he figure by a white circle and a gray circle contained
n an ellipse, respectively. Each primary input corre-
ponds to a pair of sources in an ellipse, into which no

edge comes, and each primary output corresponds to a
pair of sinks in an ellipse, from which no edge goes out.
We denote the set of sources by S and that of sinks by
T. Each logic gate is represented by a box, and each left
and right ellipse in a box corresponds to an input and
output terminals of the logic gate corresponding to the
box, respectively.
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(b) An acyclic graph G=(V,E).
Figure 2. The graph representing a given circuit

Vertex v0 (vl) is called O-vertex (1-vertex) of termi-
nal v, and represents logic value 0 (1) transmitted to
terminal v. Namely, we will represent the maximum de-
lay d(v,0) (d{v,1)) spent for transmitting logic value 0
(1) from a primary input to terminal v by the longest
path length d(v0) (d(v1)) from a source to O-vertex (1-
vertex) of terminal v. In order to do so, we generate an
edge e = (v,w) and assign delay t(e) to the edge, if a
logic value of w is determined by the logic value of v. It
is easy to generate edge(s) corresponding to a net.

For a given logic gate, an input logic value is called a
control signal, if the value of output terminal of the logic
gate is determined by the input logic value, whatever
values other input terminals have. Otherwise, it is called
a non-control signal. For AND and NAND (OR and
NOR) gates, logic value 0 (1) is the control signal and
1 (0) is the non-control signal. For an inverter, both 0
and 1 are control signals, and for an XOR gate, both 0
and 1 are non-control signals.

Let us consider the case when a non-control signal b
is transmitted to all inputs v; (1 < i < k) of a logic
gate, and let b’ be the logic value of the output w of the
gate determined by b. In this case, the maximum delay
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d(w,b') is calculated by taking the maximum as shown
below,

d(w,b’) = maz|d(vi,b)+t(vi,b) | 1<i<k]
where t(v;, b) is the gate switching delay for setting w
to be &' by the signal & of input v;. Therefore, if we
generate an edge e;b = (v;b,wb') from each vertex v;b
to vertex wb’, we can represent d(w,b’) by the longest
path length d{wb') to wb'.

On the other hand, consider the case when a control
signal c is transmitted to an input terminal v; of a gate.
In this case, the logic value ¢’ of the output w of the gate
is determined as soon as v; becomes c¢. However, if all
inputs other than v; are non-control signal, w is set to ¢/
after the delay equal to d(vi,c) + t(v;, c), where t(v;,c)
is the gate switching delay for setting w to be ¢’ by the
signal c of input v;. Hence, the maximum delay d(w,c')
for w to be ¢' is obtained by taking the maximum among
these delays d(v;, ¢) + t(vi, ¢), (1 < i < k). Thus, we can
calculate d(w,c') by the longest path length d(wc’}, if
we generate an edge e;c = (v;c,wc’) from each vertex
v;c to wc'.

Delay t(e) of an edge e thus generated is a stochastic
variable, and is modeled by t(e) = 7(e) = u(e) + Ale) +
v(e) + d(e), as described in the previous section. Since
A(e) and d(e) are independent, the mean Exp(t(e)] and
the variance Var[t(e)] of t(e) are given by
ule) + vie) ,and
Var[A(e)] + Var[é(e)]

Ezplt(e)] =
Varlt(e)]

respectively. If delays t(e') and t(e”) of edges €
and e” are not independent, the correlation coefficient
p(e',e”) # 0 between t(e') and t(e”) can be calculated
from the following equation,

V@ Varl@] - ple, )
= VVarlAE)] VarlAH@)] - pa(ese’)
+ /Var{s(e)] - Var{s(e”)] - ps(e’,e”)

where pa(e’,e”) is the correlation coefficient between
A(e') and A(e”), and ps(e’,e”) is that between d(e)
and 6(e”).

Our algorithm proposed in [1] can compute the dis-
tribution of the longest delay of an acyclic graph G =
(V, E) even if the edge-delays have correlations. The
algorithm computes the mean Fzp[d(w)] and the vari-
ance Var{d(w)] of the longest path length d(w) to each
vertex w in topological order, together with the neces-
sary correlation coefficients between d(w) and d(v) of
other vertex v and between d(w) and t{e) of an edge
e. Finally, it computes the mean Ezp[MazD] and
variance Var[MazD] of the longest delay MazD =
maz{ d(w) | w € T ] from a source to a sink. The
worst-case time complexity of the algorithm is O(|E|?),
where |E| is the number of edges.

4. Experimental Results

In the algorithm, the maximum among more than
two stochastic variables is calculated by repeating an
operation of finding the maximum among two variables,
and hence the order of the operations may be impor-
tant to improve the accuracy. Because, in [12] authors
claim that if two variables with larger mean values are
selected first and the distribution of the maximum is
computed from these selected variables, then the re-
sult is more accurate than random selection and than
selecting two variables with smaller mean values first,
although [12] does not take correlations into account.
Therefore, in the case when correlations are taken into
consideration, there may exist another method to im-
prove accuracy. For example, in the computation of
t = maz| z,y,2’ ], if p(z,2') = 1, then the calculation
of t = max{ y, maz(z,2'] | is more accurate than the
calculation of t = magz| maz{z,y], ' }. Hence, selecting
two variables with a stronger correlation first may give
a better solution. We checked this by several experi-
ments in the computation of finding the maximum of 5
variables, and compare the results obtained by our al-
gorithm with the results obtained by 1,000 times Monte
Carlo simulation. Then, we found that there exists no
specific method to improve accuracy. Therefore, we may
say that our algorithm is pretty robust for the order of
taking the maximum.

In order to see the effect of correlations (inter-die vari-
ability), we applied our algorithm to the graph G ob-
tained by cascading the graph G¢ shown in Fig.3 three
times. In the graph G, the mean p(e) of each edge e is
u(e) = 30, and the standard deviation o(e) of the delay
of edges e; (1 < i < 8) is a(e) = 0.6u(e) and that of
the remaining edge is o(e) = 0.1u(e). As correlations of
edge-delays, we introduced correlations represented by
correlation coeflicients pnet and pgqte to the pair of edge-
delays of outgoing edges from a vertex and of incoming
edges to a vertex, respectively. The pair of these edges
are depicted in Fig.3. Moreover, we introduced a corre-
lation represented by correlation coeflicient ppyp to the
pair of edge e; (1 < i < 4) and the corresponding edge
e; in the other component of the graph. This correlation
models the inter-die variability. Since there are 3 com-
ponents in the graph, there are 3 edges corresponding to
e; (1 <1< 4). In the experiments, we assign the same
correlation coefficient to all pairs of these edges.

Tablel shows the results of the effects of these corre-
lations. In the table, ”no-correlation” indicates results
obtained by ignoring all these correlations as well as the
correlations between the delays of paths. The percent-
age written in parenthesis is the relative error of these re-
sults to the result obtained by 1,000 times Monte Carlo
simulation.

In the same graph G, we changed the mean of the
delays of those edges, which are located on the top and
drawn in bold lines in the figure, from 30 to 60. The
relation between the mean and the standard deviation
is unchanged. The results are shown in Table2, where
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Figure 3. Component G, of a tested graph G

Table 1. Effect of correlations 1

correlations critical delay
pne—;[pga;[pD2D mean s.d.

no-Correlation [467.44 (4.97[%
0.0] 0.0 [ 0.0 {452.19 (1.54[%
031031 0.0 44981 (2.96(%
0.310.31 0.9 {449.81 (1.74[%

21.72 (-34.68[%))
30.33 (-8.81{%))
31.30 (0.03(%)])
37.64 (-7.50[%))

pPD2D¢p 18 the correlation coefficients between the pair of
edges e; contained in different components of the graph,
and pp2p is the correlation coefficients between the pair
of edge e; (2 < i < 4) contained in the different com-
ponents. In this experiment, both the correlation coef-
ficients ppes and pgoe. are set to be 0.

From the results shown in Tablesl and 2, we can see
that the correlations represented by pn.; and pgaie de-
crease the mean of the critical delay. Moreover, since
we may be able to assume ppap > 0, the correlation
representing the inter-die variability increases the distri-
bution of the critical delay. Therefore, we can say that
if the correlations including inter-die variability are ig-
nored, we cannot obtain precise distribution of the crit-
cal delay.

Table 2. Effect of correlations 2
correlations critical delay
PD2Dep|PD2D mean s.d.
no-Cor  |757.08 (5.54]%])|59.04 (-32.97[%)])
0.0 [ 0.0 [726.00 (2.36{%])| 87.35 (1.22[%)])
0.9 | 0.0 1726.26 (2.13[%])[116.56 (0.17[%])
0.9 | 0.9 [726.25 (2.25[%))[116.59 (-0.60[%])

R (N N Dy

5. Conclusions

In this paper, we proposed an algorithm to calculate
he distribution of the critical delay of a given CMOS
ombinatorial circuit, which can treat delay-time uncer-
ainties caused by inter-die variability as well as intra-
ie variability. And we showed some experimental re-
1lts, which indicate the effect of the inter-die variabil-
y. Since the algorithm treated the inter-die variability,
e can compute correctly the probability for a circuit to
ork in a given clock frequency.

Many works are to be done in this research. We are

now studying problems to calculate the probability for

. a path to be critical and the probability for an edge to

be included in the critical path, which will be useful in
the circuit design considering uncertainty.
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