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Abstract

We present a phase covariance model that can well
represent stimulus intensity as well as feature binding
(i.e., covariance). The model is represented by com-
plex neural equations, which is a mean field model of
stochastic neural model such as Boltzman machine
and sigmoid belief networks.

1 Introduction

We consider here complex avtivation neural networks
called covariance phasor networks which allow us to
implement covariance Hebbian learning as well as to
represent correlation of firing. The covariance phasor
network is a mean field model of stochastic neural ne-
towrks such as Boltzmann machine and sigmoid be-
lief network. Unlike the ordinal mean field methods,
the covariance phasor network can represent covari-
ance between units. This enables us to apply it as
a convinient tool for graphical models. In this re-
port the model is established and numerically exam-
inined as a deterministic model of stochasticneural
networks.

2 Covariance model

2.1 Phasor representation of correla-
tion

We introduce a phasor representation for culculating
covariance, which is convenient for neural network
analysis. The set of zero-mean (and finitely deviated)
random processes on e.g. R! are considered as a

vector space with inner product:

<X, Y >= / zydP(z,y).
A

The angle § between X and Y represents correlation.
More precisely, the correlation coefficients are given
by the cosine as

<X Y >
VX, X><Y,Y >
We now consider the linear combination of the ran-
dom processes

cosf = pxy =

n
Y =) aX. (1)
i=1
From

Co(Y,Y) = Y a;<Y,X;> (2)

i=1

= iaiCm)(Y, Xi),
im1

the following holds

n
gy pyy = Z 0;0iPY X
i=1
where 03, = Cov(Y,Y), 02 = Cov(X;, X;), and py x,
repersents the coefficient of deviation.

Let us represent each random process by phase 8
and standard deviation o as a phasor o exp(if). Note
that the value of 8 itself makes no sense solely, but
when phasors are multiplied as the inner product the
real part represents covariance between correspond-
ing processes. Correponding to eq.(1),(2),

oy exp(if)
= Z a;o; exp(i@i), (3)

=1

A =
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from which
n
oy = Z a;0; exp(i(6; — 6))
e~
ILTL
= Z a;0; cos(6; — 8). 4)
i=1

The phase 6 can be determined from the imaginary
part as

n
Z a;o;sin(6; — 8) =0.

i=1

The following property holds.

Property 1 Let X and Y be related with ¥ =
aX + b, and let their phasor representations be
ox exp(ifx) and oy exp(ify), respectively. Then
Oy =0x and oy = aoyx.

We construct the phasor network in the next sec-
tion.

2.2 Phase equation

We assume that each neuron behaves as an on-off
random process {s;}. The probability of s; =1 is

pi = F(Q_ wiss; + i), (5)
j

where f is the logistic function. Phasor network is
a neural network which accounts for pulse timing as
well as correlation. The fire timing of each neuron ¢ is
represented by a phase —7 < ¢; < 7, and the mean
firing rate (probability) is represented by 0 < r; < 1.
According to the discussion in the previous subsec-
tion, cosine of the phase difference between two neu-
rons can be interpreted as representing correlation.
To apply the phasor analysis for neural networks we
need to estimate the phasor of output process {s;}.
The difficulty to perform this is twofold; it is due
to nonlinearity of logistic function and random firing
with the rate in eq.(5) .

To provide the phasor analysis for neural networks,
we characterize each neuron by a complex variable
o; exp(i¢;), where i = +/—1. According to eq.(3)
we let each process be governed by the next phase
equations:

dz; % i
< -yt > wjioi exp(igs), ©)

i=1

where z; = 6; exp(i¢;) represents a phasor for
U = Zwﬁsi + bj,
i

and o; is simply given by the standard deviation of
on-off random process {s;} with mean r; as

We now wish to obtain the phase output equation
for {s;} taransforming ¢; to ¢;. Let a phasor repre-
sentation for {p;} be &; exp(id;).

(7

Property 2 Let X be a random process, and let
X=X-—-E{X}. Thenfori#j

< 8,8 > = < 8§;,p;>
= <ﬁhﬁ_’/>

and fori=j

a. A ~2 2

Thus fori # j
jcos(gi — ¢;) = 6;cos(di — ), (8)
oicos(¢s — ¢5) = G;icos(s — Bj). 9)

Using 43,- = qgj (see Property 1), z; = &, exp(iq’;j)
may be replaced by

2 = &; exp(id;). (10)
The corresponding phase equation is
dz; d -

d—t] =-zj + Zwﬂ&i exp(igbi). (11)

=1

Property 3 Let r; = E{s;}. Assume that 6; 1is
not so large that the sigmoid function can be linearly
approzimated around £~ (r;). Then ’

O N
U]rvaa-] 0'_7,

where 0 = /r;(1—7r;), and a > 0 is taken empiri-
cally as o =1.0. !

! Since the approximatin is first order, it cannnot be assured
for large 5;. Taking &; < o5 into account, we can use a

huristic modification of §; = aaj? tanh(y/@;).
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3 Rate equation

The phase equation discussed in the previous section
represents the correlation among firing activation on
the units. However to complete eqs.{6) and (10) we
need to evaluate r;, We will develop a mean field
approach to approximately culculating the firing rate
in probabilistic neural networks.

3.1 Probabilistic neural networks

The energy function of Boltzmann machine is defined

by
1 N N
Ha = —-5 Z W;j8i85 — Zbisi.
1,5=1 =1

(12)

3.2 Maean field approximation

Replacing < 3;,8; >=< 8;8; > —rir; =< P, Dy >
in the avarage of Eq.(12) by §:6; cos(dﬂh- - 433-), and
< 8; > by r;, we obtain a phasor covariance energy
representation.

E{H.} = —% Y wii{rir + 6165 cos(di — 4;)}

ij=1
k{3
- Z b,"l‘i.
t=1

We seek an optimal equation for r; =< s; > by
minimizing the KL-divergence between P, and the
marginal distribution Q, = IL;(s;7; + (1 —s8;){(1—73)),

KL(PalQ) = 3 Pulnie
= —Zrilnn- + (1 —7)In(1 —n;)
i=1
—E{H,} -InZ, (13)

with respet to the marginal probabilities ;. Setting
the gradient of eq.(13) equal to zero, we obtain
OE{Ha}

67‘,- )’

ri=f(-
which is an equilibrium of the gradient dynamical

system:

96: . .
%Ui cos(¢p; — ¢5)} + by,

0 J
(14)

du '

n
p7a —U; +;wﬁ{n +

1

20

From Property 3

85‘j o (1 - 27‘j) f—
81"]' e 20’j 0'3,
and we reach
du; 2 (1—2r;)
d_t] —uj + Ewﬁ{m + a———gj——]— :

=1
/56 cos(¢h; — (Z;j)} + b;. (15)

Finally it can be also shown that E{H,} decreases

according to eq.(6).
Property 4 Let

E=Ri—3 3wyt exp(ign)s; exp(~idy)]

ij=1

Then E decreases according to eq.(11).  Thus,

E{Hy} decreases according to eq.(11).

4 Mean field Boltzmann learn-
ing

Correponding to the Boltzmann Machine learning,
we obhtain

5 cos(dF — 8)

Awy; = n{rfrf +6}
&

J

cos(d; — 7)1},

[r;r; +0o;
(16)

where 1 > 0.

5 Numerical results

We compared a covariance phasor network with a
mean fleld network. Since these are deterministic
approximation of a stochastic network, a Boltzman
machine with four units is calculated for the bench
mark probability distribution.

The weights are chosen randomly from [0, 1] and
multiplied by a coefficient 8. which moves from 0
to 4.0. Figure 1 compares the Kullback-Leibler dis-
tance between Boltzman machine and deterministic
models: covariance model and a variational mean
field model. Figure 2 shows the ratio of covariance
coefficients in covariance model v.s. BM.

Finally we performed an experiment on learning
ability of a Phasor neural network. The learning tar-
get is a simple two states Markov processes which can
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Figure 1: Kullback-Leibler distance of Marginal

probability distribution: + : Mean field; o : Co-

variance.

be switched according to inputs. The network archi-
tecture is tow outputs and six hidden units. The
network could learn the target as shown in Figure 3.
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Figure 2: Ratio of correlation coefficients of Covari-
ance netowirk: + : Unitsl-4; o : Unitl-2; when the
ratio is one, the approximation is correct.

Figure 3: Target vectors are represented as two com-
plex variables of poler representation correponding to
two outputs. They are learned using learning rule of

eq.(15).
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